
Elements of Security: AIX 4.1

Document Number GG24-4433-00

October 1994

International Technical Support Organization
Poughkeepsie Center

Take Note!

Before using this information and the products it supports, be sure to read the general information under
“Special Notices” on page ix.

First Edition (October 1994)

This edition applies to the initial releases of AIX Version 4.1 for RISC System/6000.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications
are not stocked at the address given below.

An ITSO Technical Bulletin Evaluation Form for reader ′s feedback appears facing Chapter 1. If the form has been
removed, comments may be addressed to:

IBM Corporation, International Technical Support Organization
Dept 541 Mail Station P099
522 South Road
Poughkeepsie, New York 12601-5400

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1994. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Abstract

This document discusses many of the security-related elements of AIX 4.1. It is
directed toward a reader who is a system administrator for one or more AIX
systems, although much of the material may be useful to AIX users.
Recommendations and suggestions for installation and day-to-day administration
are included. Specialized topics, including DCE and NIS, are not discussed.
Basic UNIX knowledge is assumed.

(120 pages)

 Copyright IBM Corp. 1994 iii

iv Elements of Security: AIX 4.1

Contents

Abstract . i i i

Special Notices . ix

Preface . xi
Acknowledgments . xi

Chapter 1. Introduction . 1
1.1 Security Policy, Standards, Guidelines . 1
1.2 Who Needs Security? . 2
1.3 How Much Security? . 3
1.4 System Categories . 3
1.5 Common Security Exposures . 4
1.6 Physical Security . 4

1.6.1 ″Power On″ Hours . 6
1.7 System Administrator . 6
1.8 Computer Security Audits and Reviews . 7

Chapter 2. AIX Security Structure . 9
2.1 smit . 11
2.2 Visual System Manager . 12

Chapter 3. User Accounts . 13
3.1 User Identification, UID . 13

3.1.1 The root User . 14
3.2 Single-user Workstations . 15
3.3 Users . 16

3.3.1 User Parameters in Smit . 17
3.3.2 System Defaults . 20
3.3.3 Shadow Files . 20
3.3.4 Passwords . 21

3.4 Search PATH For User . 24
3.4.1 Timeouts . 25
3.4.2 Prompts . 26
3.4.3 Disabling the root Userid . 26

3.5 Groups . 27
3.5.1 AIX Group Usage and Administration 27

Group Usage for Workstations . 29
3.6 Standard Userids . 29
3.7 Files Associated With User Accounts . 30

3.7.1 Additional Authentication Methods . 33
3.8 Verifying the User Environment . 33

The grpck Command . 34
The usrck Command . 34
The pwdck Command . 34
The lsgroup and lsuser Commands . 34
The tcbck Command . 35

3.9 Other Topics . 35
3.9.1 Repairing the root Userid . 36
3.9.2 Password Cracker Programs . 37

 Copyright IBM Corp. 1994 v

Chapter 4. AIX File Security . 39
4.1 File Systems . 39

The mount Command . 41
4.1.1 Private File Systems . 41
4.1.2 Inodes and Links . 42
4.1.3 Ownership . 43
4.1.4 Permission Bits (Basic) . 44

4.2 Basic File Security Concepts . 45
4.2.1 The ls Command . 47
4.2.2 Permission Bits (Advanced) . 49

Directory Permissions Summary . 51
4.2.3 The umask Variable . 52
4.2.4 File Timestamps . 52

4.3 The ACL Commands . 53
Base Permissions . 53
Extended Permissions . 53
The chmod Command . 56

4.4 Files That Grow . 56
4.5 AIX Version 4 Error Logging . 57
4.6 Other Comments . 58

4.6.1 Unowned Files . 59
4.6.2 The /tmp Directory . 59

Chapter 5. Network Security . 61
5.1 Physical Communication Security . 61
5.2 Network Security Goals . 62
5.3 The securetcpip Command . 63

5.3.1 Remote Login Controls . 64
The /etc/hosts.equiv File . 64
The .rhosts Files . 65
The .netrc Files . 65

5.3.2 Other Important TCP/IP Files . 66
The /etc/hosts File . 66
The /etc/inetd.conf File . 66
Name Server . 66

5.3.3 The netstat Command . 67
5.4 Network File System Overview . 67

5.4.1 The /etc/exports File . 68
5.4.2 NFS Support for ACLs (Access Control Lists) 69
5.4.3 Secure NFS Operations . 69
5.4.4 The Client - Server DES Interaction . 71

5.5 Network Information Service (NIS) . 71
5.6 Adapter Security Levels . 73

Chapter 6. Logs and Accounting . 75
6.1 AIX Log Files . 75

Chapter 7. Trusted Computing Base . 77
7.1 TCB Description . 78
7.2 Using the tcbck Command . 78
7.3 Using the Trusted Login and Trusted Shell 79

Chapter 8. Auditing Functions . 83
Audit Events . 83
Audit Objects . 84

vi Elements of Security: AIX 4.1

Information Collection . 84
Audit Commands . 85

8.1 Audit Configuration . 85
8.2 Basic Audit Usage . 87

Basic BIN Auditing . 87
Basic STREAM Auditing . 88
Basic Object Auditing . 88
Minor Comments . 89

8.3 Recommendations for Auditing . 89
8.3.1 Audit Limitations . 89
8.3.2 Auditing Products . 90

Chapter 9. Other Topics . 91
9.1 Firewalls . 91
9.2 X Windows . 92
9.3 The skulker Script . 92
9.4 Controlling cron and at . 93

Chapter 10. Checklists and Reviews . 95
10.1 Planning . 95

10.1.1 Initial Installation . 95
10.1.2 Continuing Activities . 97

10.2 Reviewing a System . 99

Appendix A. DoD Classes . 105
A.1.1 Levels for Commercial Users . 107
A.1.2 Comments . 108

Appendix B. Additional Authentication . 111
B.1 Two-person Login . 111
B.2 Password and Local Program . 111

Appendix C. Audit Events . 115

Index . 119

Contents vii

viii Elements of Security: AIX 4.1

Special Notices

This publication is intended to help you to understand and implement the basic
security elements of AIX Version 4.1 The information in this publication is not
intended as the specification of any programming interfaces that are provided by
AIX Version 4 or by any subsystem or product used with AIX. See the
PUBLICATIONS Section of the IBM Programming Announcements for AIX Version
4 or for associated products for more information about what publications are
considered to be product documentation.

References in this publication to IBM products, programs, or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM program product in this document is not
intended to state or imply that only IBM′s program product may be used. Any
functionally equivalent program that does not infringe any of IBM′s intellectual
property rights may be used instead of the IBM product, program, or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Commercial relations, IBM Corporation, 500 Columbus Avenue, Thornwood, NY
10594, USA.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
(VENDOR) products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer′s ability to evaluate and integrate
them into the customer′s operational environment. While each item may have
been reviewed by IBM for accuracy in a specific situation, there is no guarantee
that the same or similar results will be obtained elsewhere. Customers
attempting to adapt these techniques to their own environments do so at their
own risk.

The following terms are trademarks of the IBM Corporation in the United States
and/or other countries:

The following terms are trademarks of other companies:

AIX IBM
InfoExplorer NetSP
AIXwindows RISC System/6000

UNIX Developed and licensed by AT&T; the
trademark is now controlled by X/Open.

Network File System (NFS) Sun Microsystems, Inc.
INed INTERACTIVE Systems Corporation.

 Copyright IBM Corp. 1994 ix

x Elements of Security: AIX 4.1

Preface

This document provides an overview of AIX security elements and
recommendations for their use. It is directed to newer AIX installations. Basic
elements of TCP/IP networking security are considered. Approaches for auditing
the AIX security environment are discussed. The reader is assumed to have a
basic working knowledge of UNIX.

The studies were done with the first release of AIX 4.1. Later updates and
releases may change some details, but the basic recommendations should
remain valid.

The material in this document should be used in conjunction with the formal AIX
documentation, both printed and on-line. Comments included in various AIX
files, as distributed by IBM, are also relevant and these are referenced in the
text.

The first chapter discusses the need for security, levels of security, and
background information which may be useful. The second chapter briefly
discusses the overall basis of security in a UNIX system.

The third and fourth chapters discuss user administration (security controls) and
file security controls, in some depth. First elements of network security are
discussed in Chapter 5. Log files created by AIX are discussed in Chapter 6.

The Trusted Computing Base (TCB) of AIX is described in Chapter 7, with
recommendations for its use. AIX′s auditing functions are described in Chapter
8. These TCB and auditing functions are unique to AIX and are important for
security administrators. Chapter 9 contains brief reviews of other topics not
covered elsewhere.

Chapter 10 contains a lists of specific installation suggestions, and a substantial
list of specific checks to be used using a security review of an AIX system.

Acknowledgments
This document is the result of a project of the International Technical Support
Organization in the Poughkeepsie Center. The primary author was William R.
Ogden.

The following people provided assistance for this document:

• Lee Terrell - IBM AIX Development (Austin)

• Kurt Meiser - ITSS International, Inc. (Poughkeepsie)

• Jean Nance - IBM AIX Development (Austin)

 Copyright IBM Corp. 1994 xi

xii Elements of Security: AIX 4.1

Chapter 1. Introduction

In most UNIX environments, security administration is considered to be a subset
of general system administration. There are rarely separate security
administrators. The term UNIX administrator covers a very wide range of tasks,
skills, and requirements.1 A new AIX user who installs his own UNIX system
(following a vendor′s “quick installation” instructions for loading the system from
a CD-ROM) is his own system administrator. A person with years of UNIX
experience, working as a full-time administrator in a large, complex networked
environment, is also a UNIX administrator. There is a wide skill gap between
these two extremes.

This document is intended for a newer, less experienced AIX administrator. It
covers some of the background concepts important for security, and addresses
the basic elements of AIX security.

1.1 Security Policy, Standards, Guidelines
″Security is a management function. ″ This statement is repeated in any
discussion of security -- and is often ignored. No reasonable combination of
hardware and software security products will be effective without a proper
management environment, involving all levels of management. Every
organization needs a security policy. It may be very simple, but it must be
understood by everyone in the organization.

Security policies, and their implementation, have been discussed in many
documents. These discussions will not be repeated here. However, they are
important; it is simply wrong to implement pieces of security without a
reasonably clear goal in mind. A security policy should outline (in some detail)
the security goals of an organization.

Security policy considerations should include:

• The security boundaries between individuals, groups, the organization, and
the rest of the world. What types of data must be restricted to specific
individuals? What is shared by departments or other groups? What is
available to everyone in the organization? What can be freely distributed
outside the organization?

• How should the organization be divided into groups (for security purposes)?
This may not always follow departmental lines. (In practice, considerable
effort is needed to produce good group definitions.)

• What levels of security are needed for these various functions? It is
important not to overstate the needs. The requirements of a clearing bank
differ from those of a clothing manufacturer. This would include rough
classifications based on confidentiality (controlled read) and integrity
(controlled write).

• Where is the line between nice to have and required security? Specifying too
much security (to cover all the nice to have situations) can detract from

1 The term “administration” tends to include many functions that were termed “systems programming” on mainframe systems.

 Copyright IBM Corp. 1994 1

required security. The trivial statement “All our company information should
be secure” is not a reasonable starting (or ending) point for a security policy.

• What is the cost of security? What is an acceptable cost? Administration
and inconvenience to users are parts of the total cost. What is the risk and
cost of lost or corrupted2 or compromised data? In many cases a reasonable
risk/cost analysis (using high/medium/low categories rather than monetary
costs) can eliminate many of the nice-to-have items from a security-controls
list.

• Who administers security? Who monitors or audits it? These functions
require time and skill. No amount of policy tuning or management directives
will make security “take care of itself.”

• The importance of the security policy to the individual and the organization?
What are the enforcement mechanisms? For example, in some
organizations a person might be casually reminded about security violations.
In other organizations he might be dismissed immediately for the same
violation.

1.2 Who Needs Security?
“Security” often invokes images of industrial espionage and “hackers.” This is a
very small element of security. The major reasons for computer security
include:

 1. Errors. A keying error may delete the wrong file, for example. Secured files
and a good backup procedure (which is also an element of security) will
reduce these problems.

 2. Disgruntled employees (or ex-employees). These may be after confidential
information or may wish to sabotage the system.

 3. Curious employees. For example, everyone would like to read (and perhaps
change) payroll and personnel files.

 4. Challenged employees. Breaking a security system is a diverting exercise
for some people. No harm is intended. However, if confidential information
is to remain confidential, it must be guarded.

There may be legal considerations involved with system security. If due
professional care is not exercised, an organization might be liable for losses
caused by poor computer security. The AIX security features and practices
discussed here, when properly used, represent generally accepted security
practices suitable for a basic commercial UNIX installation.

Several countries have laws about “databases” and security. Your system, as a
whole, might be considered a database. These laws may cover anything that
might be considered ledger data, information that might influence stock prices,
personnel information, and so forth.

Security must be reasonably consistent across an organization. There is no
point in securing a file on one system when a copy of the file can be openly read
on another system. Again, security begins with top management and the policy
(goals) should be understood throughout the organization.

2 Corrupted data is usually much more damaging than missing data. The corrupted data might be used for long periods before
errors are detected.

2 Elements of Security: AIX 4.1

1.3 How Much Security?
Too much security may be as bad as too little security. Too much security, if
poorly implemented and administered, may not be effective and can make a
system very difficult to use. Increasing system security requires increasing
administrative time and effort. Computer security levels defined by the U.S.
Department of Defense have become a point of reference for purchasing
systems. These levels, in increasing order, are D, C1, C2, B1, B2, B3, and A.
Level ″D″ has no certified security functions. The ″C″ levels have discretionary
security controls. That is, the user decides which resources to protect and
controls (to some extent) how the protection is applied. The “B” levels have
mandatory security controls (along with other additional functions). The controls
are automatically applied by the system.3 The ″A″ level is very unusual and only
a few examples exist. (These levels are in the context of isolated systems and
generally ignore networking issues.)

Installing a ″B″ level system does not automatically answer security concerns.
Considerably more planning and administrative time may be needed to
administer a ″B″ system than a lower-level system. A system certified for “B”
level probably will not run at this level when using only the default security
options. Continuing administrative effort is needed to establish and maintain the
“B” level functions. Do not purchase or install more security than you plan to
administer. Administration is not free, and is not automatic.

1.4 System Categories
This document considers two categories of AIX systems: workstations
(sometimes called clients) and servers. These terms, workstation, client, and
server, can be misleading and may not accurately describe their systems.
However, the terms have become very common and will be used here.

A workstation (as the term is commonly used) is conceptually a single-user
system. The prototype is a desktop machine with a large graphics display. It
might also be a desk-side system, and might sometimes have multiple users
connected through telnet or ftp . (X terminals are not considered workstations by
these definitions.) A workstation might be owned and used by one person, or
might be used (at different times) by a group of people. In general, all the direct
(not through TCP/IP) users of a workstation know the root password, and all can
be considered to be system administrators.

A server is a multiuser system, with a defined system administrator. The
general users of the system do not know the root password. Users may be
connected by direct or dial-in ASCII terminals, by telnet or X server connections,
or by various other client-server links.

These categories have somewhat different security requirements. We will try to
address both categories throughout this document. (The root password used in
these definitions will be discussed, in detail, later in the document.)

3 A more complete description of these levels is given in Appendix A, “DoD Classes” on page 105.

Chapter 1. Introduction 3

1.5 Common Security Exposures
This document discusses many security elements of AIX. However there are
three particular elements that are more important than all the others together.
These are poor passwords, “set userid” programs, and poor directory
permissions.

The problem of poor passwords is not unique to AIX. Every computer user is
confident that he can select good passwords. He is usually wrong. Most attacks
on UNIX systems are by password guessing. These frequently succeed because
it takes only one userid with a poor password to provide a path for gaining
unauthorized access to a system. Password quality is discussed in Chapter 3,
“User Accounts” on page 13.

Once logged into a system, an intruder4 often uses “set userid” (usually written
as suid) programs to obtain wider access to the system. This problem is
discussed in 4.2.2, “Permission Bits (Advanced)” on page 49. (By itself, the suid
function is not an exposure; it is a necessary part of UNIX. It is misuse of suid
that creates problems.) AIX does not support suid for shell scripts. This is a
major change from many UNIX systems and is a definite security enhancement.
However, it may surprise and cause some disagreement from knowledgeable
users.

File security (including files that are executable programs) is generally controlled
by permission bits, although other controls are available. In fact, two quite
different uses of permission bits are required to secure a file. The file, itself, has
permission bits. Each level of the directory chain leading to the file also has
permission bits. Users who are careful with permission bits for their files, are
often careless (or unaware) that the directory permission bits are also important
for file security. This exposure is discussed in 4.2.2, “Permission Bits
(Advanced)” on page 49.

These three problems (poor passwords, suid programs, and directory
permissions) account for many common UNIX security problems. Everyone has
read about exotic and sophisticated attacks on systems. These exist but they
are rare and require unusual skills. This document does not attempt to address
the more exotic security problems. It concentrates on common and routine
security elements for “normal” AIX systems in “normal” commercial
environments.

1.6 Physical Security
Physical security has several aspects, including:

• Access to the processor. Some systems are small enough to be carried
away by one person. Some processors have special switches that can be
used to bypass normal security.

• Cable security. LANs, in particular, are very vulnerable to unauthorized
monitoring.

• Access to privileged terminals such as ″operator consoles″.

4 Remember, an “intruder” may be a regular employee, with allowed access to the system. When the employee attempts to
bypass security, he becomes an intruder.

4 Elements of Security: AIX 4.1

• Access to diskette or tape drives. These might be used to copy large
amounts of data for analysis elsewhere. Also, it may be possible to ″boot″
an alternate operating system that ignores normal system security controls.

Problems of physical security have been discussed in many documents and
these discussions will not be repeated here. However, one element of RISC
System/6000 physical security should be understood. This is the keyswitch
present on every system. The normal position of the keyswitch prevents the
system from booting from CD-ROM, diskette, or tape (when the system is setup
“normal ly”) . The secure position prevents booting from any device and disables
the reset pushbutton.5 This is an important consideration. The maintenance
operating system that is used to install the main AIX system can be booted from
tape or CD-ROM. This small maintenance system has only the root user (and no
password is required). All the files on the main disks can be mounted and
accessed by the maintenance operating system.

The keyswitch (in the normal or secure position) prevents booting from CD-ROM
or tape. An attended system, such as a workstation, would leave the switch in
the normal position. An unattended server would normally have the switch in
the secure position, unless the system is in a secure area. If the secure position
is used, the key should be readily available to the persons who normally boot
the system. The service position is used to boot from tape or diskette; this is be
necessary when installing a new operating system and when running certain
diagnostic programs. In the service position, anyone with access to the system
can boot a maintenance system that bypasses all security and can access any
file on the disks.

KEYSWITCH POSITION
Function Normal Service Secure

reset button E E D
boot harddisk E D D
boot tape/diskette D E D

(Enabled or Disabled)

We strongly recommend that the keyswitch be set to normal or secure, and the
key removed from a RISC System/6000. The key must be available when it is
needed for software or hardware maintenance.

This policy will not prevent someone from opening the processor box and
bypassing the keyswitch. In some system models the switch contacts are not
readily accessible, and several contacts must be manipulated in a way that is
not immediately obvious. In other models, bypassing the switch is fairly easy.
In most models the keyswitch, in “normal” position, locks the covers and an
intruder may need to damage the system somewhat to obtain access to the
switch contacts.

Theft is a problem with personal computers, and the small RISC System/6000s
are about the same size as many personal computers. There is no particular

5 IBM documentation tends to use the terms boot and IPL interchangeably. IPL means Initial Program Load and is normal
mainframe terminology for booting an operating system. Also, login and logon, and logout and logoff are used
interchangeably.

Chapter 1. Introduction 5

solution for this problem. Although they may be unattractive, some of the
PC-oriented bolt/chain/cable products6 might be considered in some situations.

Physical access to terminals is not a particular problem if elementary rules
about passwords are observed and if users log out before leaving their
terminals. Installation management must have and enforce a policy about
leaving logged-in terminals unattended.

Normal RISC System/6000 installations do not have any privileged terminals,
such as operator consoles or maintenance consoles. These functions can be
performed (if needed) from any terminal, and depend on the authority of the user
(via the userid and password) and not on the particular terminal.7

1.6.1 ″Power On ″ Hours
Should the RISC System/6000 be powered-up continuously or should it be
powered-off every evening? Physical security is only one consideration for this
question. AIX normally schedules several tasks for early morning (when there
should be very few users). These tasks process daily accounting and remove
unnecessary files from the disks. If the system is shut down every evening,
these tasks must be started manually or rescheduled in some way.

Unless there is a good reason otherwise, we recommend leaving servers
running continuously. Some installations reboot the system once every week or
so.8 There is no need to leave display terminals powered on when not in use.

We have no strong recommendations for workstations. Economics and “green”
environmental policies may encourage users to turn off their systems at the end
of the day. If this is done, the cleanup jobs automatically run in the early
morning hours should be changed to run during the day.

1.7 System Administrator
This document frequently refers to the system administrator. For simplicity, we
will define a system administrator as a person who knows the root password.9 A
server should have a designated system administrator. A workstation (even if
shared among several users) probably will not have a formal system
administrator, but it will have a lead user who performs the same functions.
(Some of these tasks can be done by any member of the system group, without
knowing the root password.)

The administrator normally:

• Installs AIX, AIX updates, and other program products

• Installs new hardware devices

• Adds and deletes users

6 Examples are listed in almost any personal computer accessories catalog and in the trade press.

7 The user can configure AIX to restrict certain users to certain terminals. For example, the root user might be restricted to a
particular console. Clever use of other configuration files could extend selected privileges to certain terminals, but this is not
the default or normal situation.

8 UNIX systems sometimes accumulate dead processes that are not properly flushed from the system. Also, a reboot will
remove any virtual storage fragmentation.

9 This is a very general statement, of course, and ignores administrators within groups.

6 Elements of Security: AIX 4.1

• Takes backups

• Maintains TCP/IP and other communication services controls

• Monitors and maintains disk space

• Generally monitors the well-being of the system

Generally accepted security practices require that the system administrator
devotes some time to security checks. The time required is not necessarily long,
but it should be properly planned and consistently used. Recommendations are
found throughout this document.

1.8 Computer Security Audits and Reviews
You may be asked to perform or participate in a security audit or review. This
will usually involve demonstrating that reasonable procedures are in place to
manage security functions. Specific checks are discussed in the last chapter of
this document.

The number of computer security audits performed yearly is growing very
rapidly. These are often done in conjunction with a corporate financial audit.
Security audits started with large mainframe systems, but now often include
smaller systems and networks. The auditors may be “internal” (that is,
employees of the organization) or “external” (from an outside organization that
specializes in auditing).

A computer security audit does not normally involve detailed program analysis,10

although a major technical review may involve some program analysis. The
basic goal is to verify that “generally accepted security practices” are in effect
and are intelligently used. The audit normally checks for major security
exposures rather than subtle and exotic holes in the security controls of a
system.

The initial requirement for security audits arose as a part of the general financial
audit procedure. In the last few years there have also been direct requests from
executive management in large organizations. There are several reasons
behind executive requests for computer security audits:

• Systems are no longer concentrated in the “IS shop,” behind locked doors.
Responsibility for systems has spread throughout the organization, and no
one is responsible for overall security.

• Various lawsuits have made executive and director liability an important
consideration.

• System administrators are sometimes too close to their own systems and do
not see security exposures that may be obvious to an external reviewer.

• Computer security sometimes requires a specialized point of view and
specialized skills. These may not be readily available from internal
resources.

• System managers (and internal ″reviewers″ or ″auditors″) are influenced by
organizational politics, history, and culture. External reviewers should have
less bias in their reports.

10 It may sometimes involve spot checking a few programs or a detailed analysis of a somewhat randomly chosen program.

Chapter 1. Introduction 7

Security monitoring can be considered a subset of an audit or review. It tends to
be an automated process, using various program tools provided by the system
vendor or a third party. The intention is to maintain baseline security controls.
With some planning, security monitoring can be done remotely.

8 Elements of Security: AIX 4.1

Chapter 2. AIX Security Structure

UNIX systems, including AIX, do not have a central security manager.11 The
security mechanisms are integral to the AIX operating system. As distributed,
AIX is designed to meet the Department of Defense (DoD) 5200.20-STD
requirement for C2 level security, including authentication, access control, audit,
and object reuse control.

Key elements of AIX security include:

 1. Physical access to the system.

Physical access to a processor (including access to a key, if used by the
hardware) can permit someone to start his own operating system. This
system might bypass any software security controls and access any files
found in the system. Aspects of this are discussed in 1.6, “Physical
Security” on page 4 and 3.9.1, “Repairing the root Userid” on page 36.

 2. System state and problem state operation.

All modern processors have at least two hardware-enforced states of
operation. A program operating in system state can perform any CPU
instruction, alter any register, and so forth. A program operating in problem
state can use a limited set of instructions and cannot access some of the
control registers of the processor. Programs operating in system state can
bypass any security controls, while programs in problem state are bounded
by restrictions and the environment set by the operating system.

System state programs establish address spaces of virtual memory and
prevent different processes from accessing each other ′s memory. The same
mechanisms prevent programs from changing control bits in kernel
structures. For example, an application program cannot manipulate bits in
the kernel to permit itself to operate in system state, or to change from a
normal user program to a root program.

 3. Kernel mode and user mode. The sense of system and problem states is not
extended to the UNIX programming interface. UNIX does provide the
concept of kernel mode and user mode levels, and these very roughly
correspond to system and problem states. You can add additional programs
to your UNIX kernel. AIX makes this easy by using dynamic linking to load
kernel modules. Older UNIX technology required rebuilding the kernel in
order to add new modules.

Kernel extensions, in general, are not subject to normal UNIX security.12 If
you add kernel extensions, you are exposed to whatever these extensions
do. Obviously, you should be careful about what is added to your kernel.
(The IBM program products that add kernel extensions are “security
conscious”).

 4. Programs operating with root authority.

11 RACF, for example, is a central security manager for MVS systems. MVS system functions call RACF at appropriate times to
determine if a certain user is permitted to perform a certain function. Application programs can also call RACF to determine if
access to a specific resource is permitted for the current user.

12 This can become a very complex area. Kernel extensions can be written that comply with all security controls. Kernel
extensions can be written that ignore all security, operate in system state, and change whatever they wish. In order to install
a kernel extension, root authority is needed.

 Copyright IBM Corp. 1994 9

Under UNIX (including AIX), programs operating with root authority
automatically skip many security checks. Ignoring file permission bits is the
most apparent effect. This operation of root is part of the defined UNIX
interface. Programs operating as root are not the same as kernel-mode
programs. Except for special cases in the kernel, root programs are in user
mode (which is in CPU problem state). Later sections of this document
discuss root authority, beginning with 3.1.1, “The root User” on page 14.

Programs operate with root authority because they are called by another
process that is operating with root authority, or because they suid to root.
This is described in 4.2.2, “Permission Bits (Advanced)” on page 49.

 5. File and directory authorization.

All UNIX systems have permission bits to control access to files and
directories. AIX (and some other UNIX systems) extend this control with
Access Control Lists (ACLs) to provide finer-grain control. File and directory
modules (open, close, read, write, and so forth) contain code to check the
permission bits and ACLs, as appropriate for the function being performed.
These modules skip the checks for root users.

UNIX extends the notion of files to practically everything in the system.
Devices are files; system memory itself can be regarded as a file.
Permission bits can protect all these resources.

 6. Login authentication.

The login process establishes the user′s identity. Several programs perform
this function, such as login, telnet, ftp, rlogin, and so forth. These programs
use root authority to establish the new user ′s identity. The login function is
not always used. Any root program can assume the identity of any defined
user, effectively skipping the login process for that user.13

AIX 4.1 provides excellent login controls. These are discussed in 3.3,
“Users” on page 16. You (the administrator) should ensure these controls
are used. The login controls are effective only if they cannot be bypassed.
This is the reason you must exercise considerable care in permitting suid
root to be added to your system.

 7. Security checks by subsystems.

These are simply cases of root programs being used for a specific purpose.
For example, the telnet function consists of multiple elements (TCP/IP,
sockets, inetd , telnetd , and so forth) all operating with root authority. One of
the root programs authenticates the user (with login , or with .netrc files) and
finally creates a new process running under the end-user′s identity.

 8. Security aids.

AIX provides additional security aids. (All UNIX systems provide additional
security aids. Except for accounting (a standardized UNIX facility), different
UNIX implementations have different sets of security aids.) Some of these
are kernel mode functions (such as some auditing functions) and some are
normal programs running with root authority.

Programs that form the kernel and programs that operate as root must be
trusted. AIX identifies a Trusted Computing Base (TCB) subset of the system.
Extra utilities are provided to inspect the files that form the TCB and detect

13 This may happen when .rhost fi les are used, for example.

10 Elements of Security: AIX 4.1

changes. Special functions may be provided to ensure that a user is working
with a TCB program and not a counterfeit. These elements are discussed in
Chapter 7, “Trusted Computing Base” on page 77

The remainder of this document discusses specific security features of AIX 4.1,
and how they are used.

2.1 smit
AIX includes smit , a system management interface tool. You will use smit for
many purposes -- both for administration and routine user functions. Any user
may use smit , although most functions will succeed only if the current user has
root authority. There is no requirement to use smit ; any function that can be
done with smit can also be done with “lower level” commands. smit generates
these “lower level” commands and depends on them to perform the services
requested by the user.

smit provides an architected interface that can be used by many AIX
components. For example, DCE and CICS administration is performed through
smit .14 One subsection of smit deals with systems management, and a
subsection of systems management deals with security and users. Using an
indented notation to indicate sublevels within smit , this can be written:

smit
System management
Security and Users
(various lower level menus)

The Security and Users menus of smit cover all normal administrative needs for
basic user administration. The next chapter discusses this in detail. Note that
smit does not cover all areas of security. It concentrates on the direct aspects of
user (and group) management. The following diagram of smit menus for
Security and Users provides a good overview of what user administrative
functions can be done through smit :

smit
System Management
Security and Users
Users
Add a User
Change User′ s Password
Change/Show Characteristics of a User
Lock/Unlock a User′ s Account
Remove a User
List all users

Groups
List all Groups
Add a Group
Change/Show Characteristics of a Group
Remove a Group

Passwords
Change a User′ s Password
Change/Show Password Attributes for a User

Login Controls

14 This means that menus and panels have been added to smit to generate various DCE and CICS administrative commands.

Chapter 2. AIX Security Structure 11

Change/Show Login Attributes for a User
Change/Show Login Attributes for a Port

smit runs in character mode (started from the command line) or in graphics
mode under X Windows. The X Windows mode does not use icons, and is quite
similar to the basic character mode. We suggest you use both modes. If you
are already in X Windows at the time you need smit , start it in a window. If you
are in line mode (in a shell), we suggest you start smit in line mode; there is no
need to start X Windows just to run smit . The two forms are sufficiently similar
that using both does not create any confusion.

2.2 Visual System Manager
AIX provides an alternative to smit named VSM, for Visual System Manager.
Elements of VSM are started with commands such as xuserm, xlvm, xmaintm,
xinstallm , and xdevicem . VSM, which runs only under X Windows, has an
attractive, icon-oriented graphics user interface. VSM provides an excellent
demonstration of GUI functions, and may be useful for new administrators (or
nonadministrators who must manage a system somehow).

We expect that experienced administrators will find smit somewhat faster to
work with, and all the descriptions in this document assume the use of smit .
Many actions described for smit can be performed through VSM, but the
interface is quite different.

12 Elements of Security: AIX 4.1

Chapter 3. User Accounts

Managing user accounts is the most routine function of a system administrator.
“Traditional” UNIX systems required the administrator to edit several files (such
as /etc/passwd and /etc/group) to add or delete a user. Later generations of
UNIX provided commands (or shell scripts), such as mkuser , for common user
administration actions. AIX, and some other modern versions of UNIX, provide
higher-level tools for user administration. The AIX tool is smit .

It is possible to perform AIX user administration by editing various files, or by
using mkuser and similar commands.15 However, we strongly recommend that
you use smit unless there is a specific problem that smit does not cover well.

User management includes the use of shadow files (for better security), various
user quotas (for better resource management), login restrictions (for better
security), password criteria (for better passwords), and so forth. There are more
administrative files that must be updated, with mutually consistent parameters,
for user management than there were under the traditional UNIX systems. Using
smit is easier and much less error-prone than direct editing of all these files, or
using lower-level commands. Use smit !!

You will sometimes encounter statements that “real UNIX gurus” always manage
systems by editing basic files (such as /etc/passwd). This was a reasonably
valid statement some years ago. It is not reasonable today.

Note: This chapter ignores the effect of NIS (previously called “yellow pages”)
usage. The following discussion assumes administration is performed directly
on the system. NIS is discussed briefly in Chapter 5, “Network Security” on
page 61.

3.1 User Identification, UID
A user has two forms of identification in basic UNIX systems.16 He has a user
name, such as joe, and a user identification number, or UID. For example, joe
may have UID 201. All internal system identification uses the UID. The only
place where the user name (or “login name,” or “login userid”) is used is the
/etc/passwd file and its closely associated administration files such as
/etc/group and (in AIX) the /etc/security/... shadow and configuration files.

Every user should have a unique UID. If smit is used to create new users, it will
automatically give every user a unique UID. Although you can override this by
forcing a UID number in smit or by editing the /etc/passwd file, such actions
should be strongly discouraged. If two users have the same UID, then they are
the same user for all practical purposes. A reasonable security policy should
prohibit assigning the same UID to multiple individuals. If you want C2-level
security, you must not permit shared UIDs, because this defeats accountability
and auditability controls.

15 AIX has a large number of mk... , ch... , and rm... commands. Examples are mkuser , chuser , and rmuser . These commands are
intended for use by smit , although you can use them directly if you wish.

16 He may have more than two if additions such as DCE, CICS, RDBMS, and other subsystems are considered.

 Copyright IBM Corp. 1994 13

You will encounter some arguments for sharing UIDs. This usually occurs in the
context of a particular application. The argument goes like this:

 1. Each user (sharing a common UID) must stil l login under his own name and
must enter his unique password. This removes any need to share
passwords.

 2. The application and its data files can be made more secure by limiting
access to only the owner, and the “owner” is the shared UID. This allows
only users with the shared UID to access the files.

 3. The application program, by internal design and processing, provides all
necessary security and can differentiate between the various users sharing
the common UID.

The problem with this logic is that other applications do not differentiate between
all the users with the common UID. Accountability is lost. The desired level of
sharing can usually be accomplished with unique UIDs and appropriate group
definitions and usage. Nevertheless, there may be existing applications that
require shared UIDs.17

You can check for shared UIDs (whether root′s or normal users) by displaying
the /etc/passwd file. The third operand of each line is the UID number. If two
users (two lines) contain the same number, then they are sharing a UID. (The
fourth operand is a group ID, and it is normal for multiple users to share group
IDs.) If a considerable number of users exist, checking UIDs manually could be
tedious. The usrck command is available to do these checks and is described in
“The usrck Command” on page 34.

In this document (and in most UNIX documentation) the term “userid” means an
account name (such as joe), and “UID” means an internal user number, such as
201.

3.1.1 The root User
All UNIX systems have a user named root.18 The root user will be discussed
throughout this document. Most security controls do not apply to root. He can
read and write in any file, for example. (The root user is often called the
superuser, and the su command (which is normally considered to mean Switch
User) is sometimes referred to as the SuperUser command.)

Many user and system administration functions require you to be root. This is
because:

 1. root owns the files being updated, or
 2. root can write in the files regardless of who owns them.

For practical purposes, a system administrator must be able to run as root; the
primary system administrator of AIX is the root user. For personnel backup,
maintaining multiple shift operations, and so forth on larger systems, there will
probably be several people who know root ′s password. This disclosure of a

17 Another use of shared accounts is for training. In this case, many users may know the passwords of a few training accounts.
Obviously, these accounts should be restricted to specialized groups, have very restrictive quotas, and so forth. The best
suggestion is to limit training accounts to specific systems. Without using special shells, it is difficult to rigorously limit a UNIX
account, and you may not want user training to take place on your production systems.

18 This statement is not quite true. All UNIX systems have a user who is assigned user number zero (UID = 0). By convention,
this user is named root, although this is not an absolute requirement. It is the UID=0 that provides this user with his special
powers.

14 Elements of Security: AIX 4.1

password is probably necessary (for large systems), but must be managed with
considerable care.

It is possible to share UID=0; that is, have multiple login userids which equate
to UID 0. This permits several administrators, each with his own password, to
have UID 0 (or “root”) authority. This situation is not uncommon, but we
recommend against it. Among other problems, it encourages routine operation
as root.

Where multiple administrators are required (each of whom needs to have root
authority for certain functions), we strongly recommend that each administrator
log in with his own userid (which has its own unique UID) and then su to root
when required.19

We have two strong recommendations for root:

 1. Protect the password! Your system has no protection against anyone with
root ′s password.

 2. Do not routinely operate as root. Switch to it only when needed for an
administrative action. This prevents “accidents,” which are the source of
many security failures in UNIX.

AIX keeps a log of all uses of the su command. This log is in /var/adm/sulog .
This log can be useful for an overview of how su is being used, or for
reconstructing a series of events. It logs all use of su , including switches to root.
See Chapter 6, “Logs and Accounting” on page 75 for a discussion of AIX logs.

3.2 Single-user Workstations
“No one else uses my workstation. Why hassle with security?” “ I t ′s my system.
I login as root and never have any security problems.” “No one should tell me
how to manage my system. It′s my problem and I′ l l make my own choices.”

You may have different thoughts about these statements depending on whether
you (the reader) are the owner of a single workstation or whether you are
attempting to administer many workstations throughout a department or
enterprise.

Some degree of security is important even for a single-user workstation. As a
minimum, you probably want to prevent the wrong people from using the system.
Default userids (such as root), without passwords, are part of the basic AIX
system shipped by IBM. Anyone with physical or network access to the system
can use it until you change these defaults.

Most “single-user” workstations are networked, and no system on a network is
really single-user. Remember that being attached to a network is a two-way
relationship. See Chapter 5, “Network Security” on page 61 for more
information. It is foolish to ignore security in any workstation connected to a
network.

19 su is a standard command allowing a user to temporarily switch to another user′s identity (that is, use another user ′s UID). If
su is used with no operand, it attempts to switch to the root identity. The su command requires the user to enter the
password of the target user. Thus anyone obtaining root authority through su must know root ′s password.

Chapter 3. User Accounts 15

Even if your system never will be used by anyone other than yourself, never use
root as your routine userid. Many “security” checks are also “accident
prevention” checks. Operating as root often overrides the accident-prevention
aspects of security. As an extreme example, perhaps you want to display
/etc/passwd , but you absent-mindedly enter rm /etc/passwd instead of pg
/etc/passwd . If you are not root, you will receive an error message. If you are
root, you have created a substantial problem for yourself.

We recommend administering workstations as if they were small multiuser
systems. That is, define appropriate userids and observe reasonable directory
and file security. Significant group definitions might be omitted for workstations
(assuming they are not needed for NIS or NFS usage).

3.3 Users
Use smit to add, change, and delete users. Do not perform routine user
administration by directly editing the various files involved. Do not directly use
mkuser and related commands for routine user administration.20

If you want the default group for new users to be something other than staff, you
should edit the /etc/security/mkuser.default file. This file contains the default
attributes for users created by the mkuser command. Smit uses mkuser to add
users. The file looks like this:

user:
pgrp = staff
home = /u/$USER
shell = /bin/ksh
auth1 = SYSTEM;$USER

Change this so that an appropriate default group is defined by pgrp. (A
discussion of group definitions begins on 3.5, “Groups” on page 27.) The new
group must be defined before you create new users assigned to the group.

You also may want to edit /etc/security/.profile before adding users. This is the
prototype for the user′s own profile; this file will be copied to $HOME/.profile as
part of the smit process of creating a new user. A user can change his own
$HOME/.profile file, but most users do not. The prototype is used only when a
new user is created.

Please give some thought to userids, since they are used by humans. Employee
numbers, for example, make poor userids because they are not meaningful to
other people. Electronic mail is important on most systems and meaningful
userids make handling mail much easier. Users are much happier if their userid
is the same on all systems they use. This is easy if the new user already has a
established userid in the organization --- just ask him for his userid. If the user
is new to the organization, some coordination effort may be required to assign
him a userid. (An organization′s security standards should contain guidelines
for creating userids.)

20 The system will not prevent you from doing user administration by editing fi les or using mid-level commands. You may be
required to do this in unusual situations. Modern UNIX systems, such as AIX, have more files involved in user administration
than earlier UNIX systems, and using smit helps ensure consistent updates to the files.

16 Elements of Security: AIX 4.1

3.3.1 User Parameters in Smit
The following menu is produced by smit for adding or changing a user′s
definitions. Subsets of these same menu items are produced by other smit
menus. Read 3.3.2, “System Defaults” on page 20 before deciding how to use
elements in the following menu.

smit
Security and Users
Users
ADD a User

1 * User NAME [joe]
2 User ID []
3 ADMINISTRATIVE User? false
4 Primary GROUP [staff]
5 Group SET [staff]
6 ADMINISTRATIVE GROUPS []
7 Another user can SU TO USER true
8 SU GROUPS [ALL]
9 HOME Directory [/usr/guest]
10 Initial PROGRAM []
11 User INFORMATION []
12 EXPIRATION date (MMDDhhmmyy) 0
13 Is this user ACCOUNT LOCKED? false
14 User can LOGIN? true
15 User can LOGIN REMOTELY? true
16 Allowed LOGIN TIMES
17 Number of FAILED LOGINS before [0]

user account is locked
18 Login AUTHENTICATION GRAMMAR [compat]
19 Valid TTYs [ALL]
20 Days WARN USER before pw expires [0]
21 Password CHECK METHODS []
22 Password DICTIONARY FILES []
23 Number of PASSWORDS before reuse [0]
24 WEEKS before password reuse [0]
25 Weeks between pw expire & lockout[-1]
26 Password MAX. AGE [0]
27 Password MIN. AGE [0]
28 Password MIN. ALPHA characters [0]
29 Password MIN. OTHER characters [0]
30 Password MAX. REPEATED chars [0]
31 Password MIN. DIFFERENT chars [0]
32 Password REGISTRY []
33 MAX FILE Size [2097151]
34 MAX CPU Time [-1]
35 MAX DATA Segment [262144]
36 MAX STACK Size [65536]
37 MAX CORE File Size [2048]
38 File creation UMASK [22]
39 AUDIT classes []
40 Trusted path? nosak
41 PRIMARY Authentication Method [SYSTEM]
42 SECONDARY Authentication [NONE]

The line numbers (1 through 42) are not shown in the smit display, but are
shown here to assist the following discussion. Some of these options are
important for security and must be understood.

Chapter 3. User Accounts 17

Enter the userid (line 1, NAME) for the new user. The userid must be unique on
a given system. The User ID (line 2) is the UID. The smit process will
automatically assign the next UID; you should not override this field without a
very good reason. Leave it blank.

The administrative fields (lines 3 and 6) are described later. Leave these fields
unchanged (that is, “false” and blank) for normal users.

The User can LOGIN (line 14) field determines whether this user can login
directly. (Indirect login is partly managed by lines 7, 8, and 15.) A normal user
should be allowed to log into the system. Standard system accounts, such as
bin, are special cases in which no login should be permitted. Another special
case is root, which is discussed later. This parameter sets a flag in the
/etc/security/user stanza relating to this user. It does not set an asterisk in the
password field in /etc/passwd to inhibit login.

The SU Groups (line 8), SU TO USER(line 7), and LOGIN REMOTELY (line 15)
controls may be used to restrict access to this account. The normal (and
default) values are shown above. These default values permit access to the
account in several ways.

The SU TO USER field determines whether any other user can switch to this
account by using the su command. Not even root can su to the account if this
flag is false. If SU TO USER is true then the SU GROUPS field provides some
control over which other users can su to this account. Only users who are
members of a group listed in this field are permitted to su to this account. This
field is not effective against root, who can su to the account regardless of group
restrictions. The default value of ALL is a keyword meaning all groups; that is,
meaning no limitations based on groups. (An exclamation mark preceding a
group name functions as a “not” symbol. Members of the named group are not
permitted to su to this userid.)

The LOGIN REMOTELY field controls access through the rlogin and telnet
facilities of TCP/IP. If set to true (the default), anyone (anywhere on a connected
TCP/IP network) can log into this account using telnet if he knows the account′s
password. This parameter does not control access through the ftp function of
TCP/IP.

The initial PROGRAM (line 10) is the name (with the full path) of the program to
be given control when this user logs into the system. It is normally the name of
a shell, such as /usr/ksh . If this field is blank (the normal case), the initial
program name is taken from /etc/security/mkuser.default .

The EXPIRATION date (line 12) is usually left as 0 (meaning no expiration date).
The date format is shown in the menu. A typical entry might be “0330000095”
(MMDDhhmmyy). This parameter is useful for temporary accounts, such as for
visitors or contractors. The account is disabled after the specified date.

The ACCOUNT LOCKED field (line 13) is normally false, and can be used as the
single point of control to disable a userid. (It will not force a user off the system
if he is currently logged in.)

You can limit a user to logging in between certain hours by using LOGIN TIMES
(line 16). There are several formats for this parameter, and they are explained
in the comments in /etc/security/user . Once logged into the system, a user will
not be forced off if his session extends beyond his valid hours.

18 Elements of Security: AIX 4.1

Valid TTYs (line 19) defines the terminals this account can use. (It does not
control pseduo-terminals, as used by telnet and other remote connections.) The
full path names of terminals must be given, such as /dev/tty1. An exclamation
mark before a terminal name means that terminal may not be used. The ALL
keyword means that all terminals may be used. The ability to limit specific users
to specific terminals can be a strong security tool, but must be used with care.
For example, root might be limited to the local console, although this leaves an
exposure in the event of a hardware problem.

The WARN USER parameter (line 20) causes a warning message to be sent
when a user logs into the system if his password is due to expire within the
specified period. We recommend using this parameter if you enforce password
changing (line 25). A user needs some time to devise a good password, and this
parameter prevents an unexpected (when the current password expires) demand
for a new password.

The AUTHENTICATION GRAMMAR (line 18) should be left with the default
“compat” value. This will be used with future enhancements for distributed
systems.

Various password controls (lines 21 - 31) are discussed in 3.3.4, “Passwords” on
page 21. We suggest you leave these lines unchanged.

Do not enter anything in the REGISTRY (line 32). This is for future use with DCE
or other remote registry functions.

The process limitations (lines 33 through 37) provide some protection against
runaway programs. The Max FILE size (line 33) specifies an upper bound for the
ulimit parameter. The ulimit is the maximum size (in units of 512 bytes) of a file
written by this user. The user can change the value with the ulimit command,
but cannot exceed the value set in the smit field. It appears the minimum value
accepted by smit is 8192. Note that this maximum file size is for a single file; it
does not limit the total amount of disk space consumed by this user.

The CPU Time parameter (line 34) limits the maximum running time of any single
program. The units are in seconds and is the AIX “process” time, which is often
more than the pure CPU time. When a process exceeds this time limit, it is
interrupted by AIX. The user sees an error message and a new shell prompt.

The UMASK (line 38) is the default umask for the user. A user can change his
umask value, for the duration of a session, with the umask command. (The
umask function is discussed in 4.2.3, “The umask Variable” on page 52.)

Do not change lines 39 - 42 (AUDIT, Trusted path, PRIMARY, SECONDARY)
unless you have specific requirements. Each of these topics is discussed later in
this document.

The results of defining a new user (using the smit panel shown above) are
additions to several files:

 1. /etc/passwd wil l contain a new line defining the user.

 2. /etc/security/passwd wil l contain a new stanza for the user ′s encrypted
password and a few flags.

 3. /etc/security/user wil l contain a new stanza containing some of the user ′s
restrictions.

Chapter 3. User Accounts 19

 4. /etc/group will be altered to add the new user to one or more groups.

 5. /etc/security/limits wil l contain a new stanza containing some of the user ′s
environmental l imits.

 6. /etc/security/.ids wil l be updated to contain the next available UID.

 7. /home wil l contain a new directory, which is the home directory for the new
user. (This assumes “normal” definitions in the smit panel.)

3.3.2 System Defaults
Many of the menu items listed above might be best set as default values, instead
of individual user values. For example, you might want to establish a maximum
password age (line 26 above) for all users rather than setting it for each user.

Most of the user parameters are stored in /etc/security/user . You should display
this file (with an editor or the pg command) and study its format. There is a
stanza for every user defined in the system and a “default” stanza. As root, you
can edit the default stanza (using vi or your favorite editor) and change the
default values.21 Changes are effective immediately, the next time a user logs
into the system, unless that user has overriding values in his stanza. Also,
parameters in the default stanza will appear as default values the next time you
add a user with smit .

Of the 42 menu items displayed by the smit add/change user menus, 30 are
stored in /etc/security/user and can be controlled by values in the default
stanza. The /etc/security/limits file is organized in the same way, and defaults
for the six user limits (max file size and so forth) can be set here.

The advantages of setting default values instead of many individual user values
are obvious. The default values can be changed easily. Individual user values
should be specified only they need to be different than the default values. The
/etc/security/user and /etc/security/limits files are used whenever a user logs
into the system; changes will not affect a user who is currently logged into the
system.

3.3.3 Shadow Files
Traditional UNIX used the /etc/passwd file in a variety of ways. A user was
created by adding a line to this file. (This is still true in modern UNIX systems.)
The user′s password, in an encrypted form, was stored in the line. Other key
parameters, such as the user′s UID, default group, his home directory, and his
initial program (normally a shell) are specified in this line.

The lines in /etc/passwd are used by many programs to translate between a UID
(the internal numeric identification of a user) and a userid (the external
identification of the user). For this reason, /etc/passwd must be readable by any
program and any user. That is, it must be “world readable.” This means that all
user passwords, in their encrypted forms, are readable by anyone. The
encrypted passwords are exposed for any user to examine.

21 There is no smit menu to alter the “default” stanza. All the other (user) stanzas can be changed by using smit . If you use
VSM (the Visual System Manager), a default user “template” can be established, but the default values are not stored in
/etc/security/user . A template value only affects users added after the template value changes.

20 Elements of Security: AIX 4.1

The standard UNIX password encryption scheme (used by practically all UNIX
systems, including AIX) was considered very good when originally designed.
Increased processor speeds have helped create exposures and future processor
speeds will make the situation worse. The current exposure is based on
guessing passwords. By hand, this is a slow process. When automated, based
on large dictionaries of likely passwords (and their permutations), a password
guessing program will often succeed in finding passwords for several users in
any larger UNIX system. These programs are discussed more in 3.9.2,
“Password Cracker Programs” on page 37.

Password cracking programs require access to the encrypted passwords. If the
encrypted passwords are in the /etc/passwd file, they are readily available to
anyone. The solution has been to (optionally) move the encrypted passwords to
another file. The “other” file is generally called a shadow file, and (for AIX) is
/etc/security/passwd .

A line in /etc/passwd (which is readable by anyone) can have four types of
entries in the password field (the second field in a line):

 1. A null entry. (Fields are separated with colons. A line beginning guest::201::
.. is for userid guest, has a null password field, has UID 201, and so forth.) A
null password field means no password is required for this userid.

 2. An asterisk. This is one way to disable a userid. (AIX normally uses another
field in /etc/security/user to disable a user, but uses the asterisk method
when a user is first defined.)

 3. An exclamation mark. This means that the encrypted password is in the
shadow file /etc/security/passwd . This is the normal case for AIX.

 4. An encrypted password. An encrypted password is always 13 characters
long.

Some accounts can have encrypted passwords in /etc/passwd and other
accounts can have their encrypted passwords in /etc/security/passwd . AIX will
work properly with both cases, but we strongly recommend against placing
encrypted passwords in /etc/passwd . smit and the passwd command will
automatically place an exclamation mark in /etc/passwd and place the encrypted
password in /etc/security/passwd . There are several other files in the
/etc/security directory. These are all related to security controls and are
sometimes called the “security shadow files.”

3.3.4 Passwords
When a new user is added with smit , the account is automatically disabled by
placing an asterisk in the second field (the password field) of the /etc/passwd
line for the new user. The administrator (working as root) must use smit or the
passwd command to set an initial password for the user. Because the password
was set by an administrative user (root), the new user will be asked to change it
the first time he logs into the system. (The ADMCHG flag in the user′s entry in
/etc/security/passwd indicates a password change is required.) Setting the
initial password enables the new account, permitting the new user to log into the
system.

The passwd command is the “normal” UNIX command for changing passwords.
The command can be used by any user to change his own password, or by root
to change any user′s password. There is no particular advantage to using smit
to change a password; the passwd command does the same thing.

Chapter 3. User Accounts 21

The smit function for changing a password is in the same menu as the function
for adding a new user. It is usually convenient for the administrator to set an
initial password for a new user immediately after he creates the new user, and
the smit function is convenient then. In some cases, it may be appropriate to
create a number of new users but not enable them (that is, not assign initial
passwords). For example, a new group of student userids might be created at
convenient times but not enabled until their class begins. In this case, using the
passwd command may be more convenient than setting the passwords through
smit .

Remember that an administrator (running as root) must always assign an initial
password in order to activate a new account. A new account cannot be used
until this is done.22 There is a well-known exposure here. What password
should the administrator set as the initial password? Administrators tend to set
a common password, such as the userid or a department name, for all new
users. Knowing this, anyone can “steal” a new account by being the first to log
into the account (using the standard initial password). There are two solutions
for this problem:

 1. The administrator can set an obscure password (different for every new
user) and inform the user of the selected password.

 2. The administrator can delay setting the initial password until the new user is
ready to log in. This means there will be a short period when a standard
initial password is exposed.

In either case, the new user is prompted to alter his password as soon as he
logs into the system.

Many security failures begin with poor passwords. Password quality has been
discussed many times in many places; these discussions will not be repeated
here. The following are basic guidelines:23

• Do not use your userid or any permutation of it.

• If you use the same password on more than one system, be extra careful
with it. Never use the same root password on multiple systems.

• Do not use any person′s name.

• Do not use words that can be found in the online spelling-check dictionary,
especially for a networked or larger multiuser system.

• Do not use passwords shorter than five or six characters.

• Do not use swear words or obscene words; these are among the first words
tried when guessing passwords.

• Do use passwords that you can remember. Do not write down your
password.

• Do consider passwords that consist of letters and numbers.

• Do use passwords that you can type quickly.

• Two words, with a number in between, make a good password.

• A word (with at least six characters), with a numeric digit inserted in the
word, is an excellent password. (But do not form the digit by changing an

22 This statement assumes the account was created, in the normal way, through smit .

23 The new password quality controls in AIX 4.1 can help enforce these guidelines.

22 Elements of Security: AIX 4.1

“l” to “1” or an “o” to “0.”) A word with an internal digit is a better
password than a word with a leading or trailing digit.

• A pronounceable password is easier to remember.

• AIX checks only the first eight characters of the password; however the word
can be longer than eight characters.

You can specify password quality and composition rules for each user, or by
editing the default stanza in /etc/security/user . Individual controls can be set
using the smit menu discussed in 3.3.1, “User Parameters in Smit” on page 17.
The controls are:

recommended default
minage 0 0 (weeks. Use 0)
maxage 12 0 (maximum age in weeks)
maxexpired 4 0 (weeks after expire)
minalpha 1 0 (alpha characters)
minother 1 0 (non-alpha characters)
minlen 6 0 (minimum length)
mindiff 3 0 (different from last pw)
maxrepeats 3 8 (repeated characters)
histexpire 26 0 (prohibit reuse, weeks)
histsize 8 0 (number of old passwords)
pwdwarntime 14 0 (warning time, days)

The default values provide no password quality controls. This is intentional, as it
conforms with the expected characteristic of “standard” UNIX.

maxage/minage defines the maximum/minimum age (in weeks) of a password.
The default is 0 in both lines, indicating that the password has no minimum or
maximum age. We recommend that you do not use the minage parameter. It
can create awkward situations and may cause more trouble than it cures.
Consider using smaller maxage values for privileged users such as root and
members of the system group. The maxage of a password limits the time period
during which an exposed (or disclosed) password can be used.

There has been some debate whether a rigid password expiration period is a
good option. If a user suddenly must select a new password, he may select a
trivial or poor password. That is, he may not be prepared to seriously think
about a new password while he is trying to log into the system for some other
purpose. The pwdwarntime parameter (specified in days) causes AIX to warn
the user shortly before his password expires. This permits the user to change
his password in a timely manner.

The maxrepeat, mindiff, minlen, minalpha, and minother parameters provide
basic quality controls. These control the maximum number of repeated
characters, the minimum number of characters that a new password must differ
from the previous one, the minimum length, the minimum number of alphabetic
characters, and the minimum number of nonalphabetic characters that must
appear in a password.

AIX has an option to remember old passwords. (The /etc/security/pwdhist.dir
and /etc/security/pwdhist.pag files are used.) The histexpire parameter specifies
the number of weeks that must elapse before a password can be reused. The
histsize parameter specifies the number of other passwords that must be used
before a given password can be used again.

Chapter 3. User Accounts 23

AIX provides two more password quality control functions. A file of invalid
passwords can be specified (with the d ic t ion l is t= parameter) and a list of user
programs can be specified (with the pwdchecks= parameter) to perform any
customized password checking. The file of invalid passwords might be
/usr/share/dict/words (if it is present in your system) or any other list of words.
These parameters can be set for individual users through smit or set as defaults
by editing /etc/security/user .

3.4 Search PATH For User
The PATH is an environmental variable used by the current shell when searching
for executable files (commands).24 When using a normal shell, a user can change
his PATH specification at any time. There is no reasonable way to prevent
changes. (The restricted shell, discussed in Chapter 7, “Trusted Computing
Base” on page 77 does not permit changes to PATH.)

One security goal is to prevent root (or any other user, for that matter) from
executing a counterfeit program. For example, if /tmp (an unprotected directory)
is the first element in PATH, and if someone places a program named su in
/tmp , then this su will be executed instead of the correct system su program.
The PATH exposure is a simple concept, and you (the system administrator)
must understand it. You should devote whatever time is necessary to
understand it. You cannot hope to maintain a secure system if you do not
understand PATH handling.

A user′s PATH is normally set (using the system profile and the user′s profile (if
it exists)) when he logs into the system. Both /etc/profile and $HOME/.profile
are executed automatically when a user logs into the system.25 The root user
often has the root directory as his home directory, and /.profile (if it exists) will
be executed when root logs into the system.26

When switching user identities with the su command, the target user′s profile is
not automatically executed. (Using a “-” flag with the su command will cause
the target user′s profile to be executed, but this may have after-effects on the
current user after exiting from the target user ′s identity. Typically, the “-” flag is
not used with su .) For example, if you log in as a normal user and then su to
root, you continue to use the profile (and PATH) established by the original user
identity. This can be the source of serious exposures, similar to this:

 1. A user (wanting to obtain root ′s password) writes a small C program to
counterfeit the initial appearance of the su command. That is, it asks for a
password.

 2. The user compiles and links this program into his home library.

 3. The user alters his PATH to search his home directory first, before looking in
various system directories.

 4. The user asks the administrator for help with a problem that is likely to
require root access.

24 Unlike DOS, OS/2, and Windows, UNIX systems do not automatically search the current directory when looking for an
executable file.

25 Note that the profile file name in the user′s home directory begins with a period.

26 Root′s profile may be marked non-executable. This does not prevent the login process from executing it.

24 Elements of Security: AIX 4.1

 5. The administrator sits at the user ′s workstation and uses su to switch to
root. When the administrator enters the su command, the system searches
the current home directory (as directed by the PATH) and finds the
counterfeit su program and executes it.

 6. The counterfeit program prompts the administrator for the root password,
stores the password in a hidden file, sends an error message indicating an
incorrect password, and erases itself.

 7. The administrator thinks he has entered the wrong password and tries again.
This time, the correct su command obtains control (because the counterfeit
program is gone) and the session continues normally.

 8. The user later reads the root password from the hidden file and is able to
login as root.

This is the classic Trojan horse attack and it worked because the administrator
executed su using the wrong PATH. There are two lessons to be taken from this
type of attack:

 1. An administrator, when executing as root, should always enter the full
pathname of commands if he is working under another user ′s environment.
This avoids usage of the existing PATH definition.

 2. The PATH for a normal user should search the standard system directories
before searching the current directory or specific $HOME directories.

The default path (set by the default user profile) for AIX is:

PATH=/usr/bin:/etc:/usr/sbin:/usr/ucb:$HOME/bin:/usr/bin/X11:/sbin:.

Subdirectories within /usr contain most of the AIX commands used by normal
users. The /etc directory contains symbolic links to commands in more remote
directories. Notice that the system libraries are searched first. After the system
libraries are searched, $HOME/bin (a conventional location for products installed
in the user′s home directory) is searched. The “dot” in the last position of the
PATH is significant. This indicates that the current directory should be searched.

Ignoring minor elements (X11 and /sbin), the PATH search order is: system
directories, home directory (bin), and current directory. This is a safe search
order, although one can argue that the current directory (the “dot”) should not
be in the PATH at all.

3.4.1 Timeouts
Timeouts are used to automatically log out a terminal that has been inactive too
long. The timeout function is provided by AIX shells, not by the basic AIX kernel.
By default, there is no timeout period set. The Korn shell uses the TMOUT
variable and the Borne shell uses the TIMEOUT variable to provide timeout
values. You (the administrator) should set one or both of these variables if you
want to automatically log off terminals after an excessive idle period. We
strongly recommend using this function because unattended terminals are
serious security exposures.

We recommend adding lines similar to:

TMOUT=45
TIMEOUT=45
export TMOUT TIMEOUT

Chapter 3. User Accounts 25

to /etc/profile or to /etc/security/.profile (from where it will be copied to the
home profile of new users). The timeout is expressed in minutes. A reasonable
timeout value can be the subject of much argument, but will probably be
between 20 and 120 minutes.

The timeout period is for the shell. If a user nests several shells (by issuing the
ksh command repeatedly, for example), the shells will timeout in reverse order
with each one taking the full timeout period. The timeout period is a shell or
environmental variable and can be changed by each user. You cannot readily
enforce a standard value (unless your users are unaware that they can alter the
timeout value).

3.4.2 Prompts
You may want to set the shell prompt to show the current directory. For Korn
shell users, this is done by adding the following two lines to $HOME/.profile :

PS1=′ $PWD $ ′ (use single quotes)
export PS1

This change provides a shell prompt with the current path name followed by the
tradit ional “$.” Unfortunately, this simple technique provides a misleading
prompt if the user executes an su to root. The “$” will still appear instead of the
“#” which is traditional for root. This can be avoided by (1) not using this
alteration for users who frequently su to root, or (2) using the command su -
(with the “-” flag) when changing to root.

A prompt displaying the current directory path is helpful for many users,
especially if they routinely work with multiple directories. There are no security
elements involved (other than the misleading prompt after su to root), but a
more informative prompt may reduce user errors.

There are many more sophisticated methods for obtaining informative prompts.
Almost any book discussing UNIX usage or administration will contain
suggestions for shell prompts. We recommend the simple version (listed above)
only if it fits your needs or if you are not comfortable with (that is, do not
understand) more complex prompt functions described elsewhere.

3.4.3 Disabling the root Userid
There is seldom a good reason for logging in as root. Most system “accidents”
in UNIX are partly caused by routine use of root as a working userid. After your
system is installed, you may want to disable the ability to login as root.
Authorized users (those who know the password for root) could then su to root
after they login under their normal userids.

Disabling root is easily done with smit :

smit
-Security and Users
--Users
---Change / Show Characteristics of a Userid

* User NAME [root]

...
Another user can SU TO USER? [true]
...
User can LOGIN? [false] <---

26 Elements of Security: AIX 4.1

User can LOGIN REMOTELY? [false] <---

Do not disable root by editing /etc/passwd and changing the password field.
This will also prevent you from using root through su or telnet .

3.5 Groups
In larger installations, good system administration usually revolves around group
definitions. Guidelines for forming groups should be part of any security policy.
Defining groups for large systems can be quite complex, and is beyond the
scope of this document.27 Users will often belong to more than one group, but
group membership should not be excessive.

If at all possible, group definitions should extend across all system platforms:
MVS, UNIX, NetWare, and so forth. That is, a given group name should have the
same members, the same security associations, and similar administration on
MVS and UNIX and LAN systems. Good group definitions are often related to job
functions instead of a strict organizational structures; for example, there may be
a group for secretaries, regardless of their department. This is a difficult goal.
System administrators will seldom do it voluntarily because it requires endless
“coordination” meetings with other system administrators. Nevertheless, it is a
good goal because it forms and helps enforce a meaningful security policy for an
enterprise.

The standard UNIX file security controls, the permission bits, provide very limited
granularity. (The AIX ACL functions extend this, and are discussed later.)
Well-planned use of group definitions substantially extends the usefulness of the
permission bits.

However, it must be admitted that most UNIX administrators ignore group
definitions, or, at best, define groups for use only within their system. It can be
argued that no (or minimal) group definitions are better (more secure, less
hassle) than poorly planned group definitions. Poorly planned groups tend to
overlap in unexpected (and unsecure) ways, especially if a new group is defined
for every new situation.

Our recommendations are:

 1. If possible, coordinate group definitions in as large a context as possible. At
the enterprise level is best.

 2. At whatever level the groups are defined, think!!! Consider scenarios. Ask
for advice. Once established and in use, group definitions are exceptionally
difficult to change.

3.5.1 AIX Group Usage and Administration
A user can be a member of multiple groups, and AIX will automatically search
all of a user′s groups (if necessary) for file access permissions. This is a
substantial improvement over some earlier systems. It allows good control with
a reasonable number of groups, even for complex organizations.

27 One goal is to have a moderate and stable number of groups. A symptom of poor security and poor administrative planning is
a constantly increasing number of groups.

Chapter 3. User Accounts 27

In some cases, the multiple group search for permissions might lead to
unanticipated results. If ACLs are used (see 4.3, “The ACL Commands” on
page 53), it is possible that conflicting levels of authority exist for different
groups.

The newgrp command can be used (by a normal AIX user) to switch his primary
group. (He must be defined as a member of a group before he can switch to it,
of course.)28 This may be important when creating files because, by default, the
current group name is assigned to a newly created file. (An alternate method of
determining group ownership of a new file is discussed in 4.2.2, “Permission Bits
(Advanced)” on page 49.)

Your most common group name should be made the default group name for new
users; as supplied by IBM, the default group name is staff. Edit your default
group name into stanza pgrp in the file /usr/lib/security/mkuser.default . This file
provides default values for the mkuser command and smit.

For example, you might want your default group to be office. Edit
/usr/lib/security/mkuser.default and change:

user :
pgrp = staff

to:

user :
pgrp = office

New users added to the system (using smit) will default to group office. Of
course, you may assign users to specific groups instead of taking the default.
(You must create a group before you can assign users to it, of course. Use smit
to create new groups.)

There are two types of groups in the system: administrative groups and normal
groups. An admin group is defined in /etc/security/group by the admin stanza.
In every group there can be a group-administrator. This is defined in
/etc/security/group by the adms stanza.

The administrative parameters are confusing. If the value admin = t rue is in
/etc/security/group , then this indicates an administrative group. But
admin=t rue in /etc/security/user means that the user has administrative
authority for that specific group which is equal to the adms stanza in
/etc/security/group . With admin= t rue , the user can administer that group.

The administrative group and authority has very little effect in AIX.29 We
recommend you ignore the administrative groups and users for smaller systems.
Smaller systems can use root to perform user administration, and root does not
need any other administrative authority in AIX. Large systems (with more than
30 or 40 users) might need group administrators. If your security policy permits
it, the easiest way to implement group administrators is to allow them to su to
root. That is, give them the password for root. If your security policy does not
permit group administrators to know the root password, then you might use the
admin group and attributes.

28 Some traditional UNIX systems permitted a user to switch to a group in which he was not a member, if he supplied the
password of the group. AIX does not support this function, and does not support any use of group passwords.

29 This may change in future releases, so do not abuse the administration definition by making everyone an administrator.

28 Elements of Security: AIX 4.1

AIX does not implement or use group passwords. It is not possible to log in
using a group name.30

IBM provides a group named security. Any member of this group can read all
the user-administration files in the /etc/security directory, and can execute many
of the system administration commands. With little effort, a member of the
security group can gain root authority; therefore only trusted personnel should
be in this group.

Group Usage for Workstations
A workstation may be a special case for group definitions. A workstation that is
used only by a small number of users (or only one user) and that is never the
target of telnet or ftp operations by anyone else is a special case. (It may also
be a rare case because most workstations are members of a network and over
time, for one reason or another, will be accessed by other users in the network.)

If meaningful group definitions will not be used for a workstation, then two of the
IBM-defined AIX groups should be used. These are the system and the staff
groups. Users (including yourself in your normal user mode) will be in the staff
group. User root and yourself (in your administrator role) are in the system
group.

3.6 Standard Userids
As distributed, AIX has userids and groups that are needed by the system. Do
not alter these users and groups unless you are very certain about what you are
doing. Never login to any of these userids (except root).

The user ids that are supplied with the system (in the form in which they appear
in /etc/passwd) are listed below. These are used for various purposes, such as
file ownership and NFS functions. All these except root have been disabled for
login in the distributed system. (They are disabled by password = * in
/etc/security/passwd .) The supplied userids are:

root:!:0:0:/:/bin/ksh
daemon:!:1:1::/etc:
bin:!:2:2::/bin:
sys:!:3:3::/usr/sys:
adm:!:4:4::/usr/adm:
uucp:!:5:5::/usr/spool/uucppublic:/usr/lib/uucp/uucico
guest:!:100:100::/usr/guest:
nobody:!:4294967294::4294967294::/:
lpd:!:104:9::/:

New users that you add will default into the staff group, unless you change the
default. A workstation with only a few defined users will probably allow new
users to default to the staff group. A larger multiuser system should have locally
defined groups. You may find the system group useful if you have multiple
administrators, since this group allows execution of many administrative
functions. Other than these two groups (staff and system) the predefined AIX
groups are for special system purposes. Do not add users to the other

30 Some traditional UNIX systems permitted direct login using a group name. Among other problems, this reduced individual
accountability of users, and made reconstruction of error situations more difficult.

Chapter 3. User Accounts 29

predefined groups unless you have a special purpose for doing so. The groupids
that come with the system are (in the form in which they appear in /etc/group):

system:!:0:root
staff:!:1:
bin:!:2:root,bin
sys:!:3:root,bin,sys
adm:!:4:bin,adm
uucp:!:5:uucp
mail:!:6:
security:!:7:root
cron:!:8:root
printq:!:9:lpd
audit:!:10:root
ecs:!:28:
nobody:!:4294967294:nobody
usr:!:100:guest

We strongly advise you to not assign users to any existing group (except staff, of
course) unless you are certain of the consequences. Some of these groups
(such as system, bin, security, cron) are the group-owners of critical files and
directories. A user in any of these groups, with a little effort, can subvert other
security controls in the system.

3.7 Files Associated With User Accounts
The files that are associated with user administration are listed here with brief
comments. Almost all files directly associated with user and group
administration are in the /etc/security directory.

• /etc/security/.ids Do not edit this file. It contains the sequence numbers the
mkuser command uses so that a new group or user always gets a unique
uid /gid. The file is updated automatically by various commands invoked
(internally) by smit . An example of this file is:

6 221 12 206

where:

− 6 = next administrat ive uid number
− 221 = next uid number
− 12 = next administrat ive gid number
− 203 = next gid number

• /etc/group contains basic group definitions. You would normally update this
file through smit , but you may edit it directly. (A + (plus sign) beside an
entry means to refer to the NIS server for additional entries. Never use the
“+” unless you are certain NIS is installed and available in your network.)

• /etc/security/group contains additional group information, such as adms and
admin flags. You would normally update this file through smit , but you may
edit it directly.

• /etc/security/login.cfg contains stanzas for a variety of system-wide controls.
There are no per-user stanzas. The controls are generally related to
terminal and port usage. Some of the parameters can be set through smit
with the “Change / Show Login Attributes for a Port” menu, while others can
be changed only by directly editing this file. Comments in the file describe
the functions and formats very clearly. Stanzas include:

30 Elements of Security: AIX 4.1

− A group of parameters related to invalid logins. These parameters can
delay or prohibit (for a period or indefinitely) additional logins after a
failed login. These parameters can provide valuable protection for a
system under attack by someone attempting to guess userids and/or
passwords. If you have dial-in ports or are exposed to a large group of
potential intruders, you should edit and use these parameters.

− sak_enabled - controls the availability of the secure attention function for
a port. This is discussed later under the “Trusted Computing Base.”

− auth_method (not defined in default file shipped with AIX) - defines
different or additional authentication methods. See 3.7.1, “Additional
Authentication Methods” on page 33 for discussion.

− herald parameters (the initial screen display before a user logs in) are in
this file. You may edit and redesign the herald display. Be certain your
herald contains enough new-line characters to clear the screen.

− usw - this is used only by the chsh command, and is a list of valid shells.
Specify full path names. (The chsh command changes the initial
program parameter in the user′s line in /etc/passwd . This command is
normally generated by smit , and is not normally used directly.)

− maxlogins - sets the maximum number of direct terminal users who may
be logged in at one time. (This parameter should be changed with the
chlicense command, used in accordance with your AIX usage license.)

− logintimeout - the time within a login must complete.

See 3.9, “Other Topics” on page 35 for the smit menu associated with some
of these controls.

• /etc/passwd contains basic user definitions. An “!” (exclamation point) in the
password position is normal and causes the system to look in
/etc/security/passwd where the encrypted password is kept. If the ! is
replaced with an * (asterisk), the userid is locked. The passwd command
replaces the * with an ! while defining a password. (A plus sign (+) beside
an entry indicates a switch to NIS for additional entries.) You would normally
update this file through smit , but you may edit it directly.

• /etc/security/passwd contains encrypted passwords, a time-stamp of the last
update, and a flag indicating whether the password was updated by the
administrator. (If so, the user will be prompted to change the password the
next time he logs in.) You normally update this file through smit . You would
edit it directly only in special circumstances, since you cannot directly enter
the encrypted password.

• /etc/passwd.dir and /etc/passwd.pag are created by the mkpasswd command
and contain small database structures to speed access to the userid
administration files. Do not edit these files.

• /etc/security/user contains most of the user control parameters described in
3.3.1, “User Parameters in Smit” on page 17 and 3.3.2, “System Defaults”
You would normally update this file through smit , but you may edit it directly.
You should browse this file and become familiar with its format and contents.

• /etc/security/environ can contain environmental attributes for users. You
can specify exceptions from the default user environment defined in
/etc/environment ; for example, give a user a different NLSPATH (displaying
messages in another language). You may edit this file directly, although we
have not found a concise definition of exactly what (and in what format) can
be placed in this file. There is one stanza for each defined user, but no
control parameters are placed here by AIX.

Chapter 3. User Accounts 31

• /etc/security/limits contains resource parameters. These can be important
on multiuser systems to prevent a single user from consuming too much of
the system′s resources. There is one stanza per user and a default stanza.
AIX will recognize all the following parameters, but some appear to have no
effect in this release of the system. All of these parameters can be set
through the user functions of smit . You can edit this file directly, but we
recommend using smit instead.

− fsize is the largest file a user can create. The default is 2,097,151 blocks.
This is approximately 1GB of disk space. We recommend a smaller value
in a multiuser environment. For example, 20,000 (which allows file
creation up to 10 MB) might be a reasonable value. The smallest
number that can be set through smit appears to be 8192.

− core is the largest core file allowed, in units of 512 bytes.
− CPU is the maximum number of CPU-seconds a process is allowed

before being killed.
− data is the largest data segment allowed, in units of 512 bytes.
− stack is the maximum stack size a process is allowed, in units of 512

bytes.
− rss is the maximum real memory size a process can acquire, in units of

512 bytes.

• /usr/lib/security/mkuser.default contains a few defaults used when creating a
new user. You may edit this file directly. It contains the default group, the
default initial program (shell), and the default home directory name for a new
user.

• /etc/security/failedlogin contains an entry for every time a login fails. The file
can be displayed with the who command:

who -a /etc/security/failedlogin >> /tmp/check

This example will redirect the output to a file called /tmp/check .

Do not edit this file. However, after an extended period you might want to
delete it and allow the system to recreate it to recover disk space. This file
is not as useful as it could be because it does not record invalid userids; that
is, any userid that is not in your /etc/passwd file. Invalid userids are
recorded as UNKNOWN rather than as the actual id entered. (Recording
invalid userids is, itself, a potential security exposure, because entering a
password when the system wants a userid is a common error.)

• /etc/security/lastlog has one stanza per user and contains information about
several last logins (valid and invalid). Information from this file is displayed
at user login time. You may display the file, but do not edit it. (The
timestamps in the file are unreadable by humans, so that displaying it is of
little value.)

• /etc/security/.profile is the prototype for the $HOME/.profile file for new
users. You may edit this file and change it as required. It has no effect
except when a new user is created.

• /etc/profile This file provides a system-wide login profile for all users. Any
user ′s individual .profile (in his home directory) can override parameters in
/etc/profile . You may edit this file directly. Typical contents include:

.
− TMOUT/TIMEOUT defines the time (in seconds) that a user can be idle

before he is automatically logged out of the system. TMOUT is used by
ksh and TIMEOUT by bsh .

32 Elements of Security: AIX 4.1

− Local options are often included here. Examples are local PATH
variables for product libraries, a call to /usr/games/fortune , and so forth.

Several of these files have a second, older, copy in the /etc/security directory.
The “old” copy has the letter “o” as the first character of the file name. For
example, /etc/security/limits and /etc/security/olimits both exist. The smit
processes (that is, the lower-level commands called by smit) copy the current
file to the “old” version for recovery purposes. This is process is automatic.
You should never touch the “old” files unless a disaster corrupts the operational
files. The “old” files are normally one level down from the operational files; that
is, the most recent change is not reflected in the old files.

3.7.1 Additional Authentication Methods
It is possible to have more than one method of authentication, for example:
multiple passwords, a fingerprint scanner, one-time password response units,
and so forth. AIX provides a simple interface for you (the system administrator)
to specify additional authentication programs. You must provide the
programming to perform the additional authentication. Appendix B, “Additional
Authentication” on page 111 provides more detail and an example of an
additional authentication program. We recommend using additional
authentication only if there is a specific need for it.

The easiest additional authentication method to add is “two person
authentication.” This requires two passwords for logging into the system. The
required setup is discussed in Appendix B, “Additional Authentication.”

Note that the AIX terminology is unusual. You may have multiple primary
authentication methods and multiple secondary authentication methods. Primary
methods can reject a user; secondary methods cannot reject a user. More
common terminology would refer to anything additional to standard password
checking as “secondary authentication.” This differing terminology can be
confusing when talking with people who are serious about secondary
authentication (in the more common sense of the term).

3.8 Verifying the User Environment
Security implementation requires both definition and maintenance. The security
of a system is measured by how well the security state is maintained, as well as
by how well it was originally defined.

Several “check” commands (grpck, usrck, pwdch, sysck, tcbck) and “l ist”
commands (lsuser and lsgroup) are available for use by root (or anyone in the
security group.31 These commands can help you maintain your security
environment.

31 In early releases of AIX these check commands were automatically executed as part of the sysck command. This is not done
in current releases of AIX.

Chapter 3. User Accounts 33

The grpck Command
The grpck command verifies that all users listed as group members are defined
as users, that the gid is unique, and that the group name is correctly formed.
Other minor checks are also done. The -t flag causes the command to report
errors and ask you for permission to fix them:

grpck -t ALL

This checks the group environment, and, if you answer yes to a prompt, it will
erase the userids that do not exist or where stanzas in /etc/security/user have
conflicting data.

The usrck Command
The usrck command verifies many parameters of a userid definition. The -t flag
causes the command to report errors and ask for permission to take a standard
fix. In some cases it will disable a userid by adding an expired expiration date
to the user definition. The user′s data is not affected. The user can be enabled
again by removing the expiration date (using smit or directly editing
/etc/security/user).

Use this syntax to report problems and ask if they should be corrected:

usrck -t ALL

Never try to correct root using this command. If you want to try it, please read
3.9.1, “Repairing the root Userid” on page 36 first.

The pwdck Command
The pwdck command checks authentication stanzas in /etc/passwd and
/etc/security/passwd . If anything is wrong the standard fix is to remove the
stanza or create a /etc/security/passwd stanza with an * (asterisk) in the
password field.

This syntax will report problems and ask if they should be fixed:

pwdck -t ALL

We found that pwdck did not check for our specified password rules, such as
minalpha, minother, and lastupdate.

The lsgroup and lsuser Commands
These commands are used internally by smit , but you can also use them
directly. Direct use may be more convenient when you want to place their
output in a file. The commands are:

lsgroup -f ALL >> /tmp/check
lsuser -f ALL >> /tmp/check

In the form shown here, these commands create the file /tmp/check and write
their output into it. There is too much output for direct display on the screen, so
the output would normally be directed to a file. These commands display most
of the control information about users and groups. These commands may be
used by any user, but much more information is displayed when they are used
by root (or any member of the security group).

The lsuser command is directly useful when used by root for a specific user:

lsuser joe

This command will display several lines containing control information for user
joe. When used with the ALL operand, information is displayed for all users in

34 Elements of Security: AIX 4.1

the system. Several formatting options are available. You could write local
programs to extract and display locally-important information obtained from
these commands.

The tcbck Command
This command is described in detail in Chapter 7, “Trusted Computing Base” on
page 77. It requires on-going maintenance of a special database, and a certain
amount of planning.

3.9 Other Topics
The command mkpasswd /etc/passwd can be used to create two small “hash”
files to speed system lookup of entries in /etc/passwd . If you have a larger
system, with perhaps more than 100 users defined, this command may improve
system performance slightly. You should run the command once. It will create
/etc/passwd.dir and /etc/passwd.pag . Once they are created, AIX will
automatically update the hash files when smit is used to alter /etc/passwd .

Security controls can be assigned to specific ports (such as /dev/ttyp0). These
controls are stored in /etc/security/login.cfg , which is discussed in 3.7, “Files
Associated With User Accounts” on page 30. The smit menu is:

smit
System Management
Security & Users
Login Controls
Change / Show Login Attributes for a Port
*Port NAME [/dev/ttyp0]
Allowed LOGIN TIMES []
Login RETRY DELAY []
Number of FAILED LOGINS before []
port is locked

INTERVAL for counting failed logins []
REENABLE DELAY for locked port []
Is this PORT LOCKED? []

The exact format and meaning of these parameters is documented in the
comments in /etc/security/login.cfg . The combination of the RETRY DELAY,
FAILED LOGINS, INTERVAL, and REENABLE DELAY can provide good protection
against repeated attacks on a dial-up port, in which the attacker is attempting to
guess a userid or password.

The /etc/security/login.cfg file contains a default stanza and, potentially, a
stanza for each port. We suggest using the default stanza rather than specifying
values for each port (unless you need different values for different ports, of
course). Unlike system user defaults (see 3.3.2, “System Defaults” on page 20),
the port default values may be set using smit by entering “default” as the port
name.

The files /etc/environment and /etc/profile contain similar types of profile and
environment information. Both files are executed for every user at login time.
The /etc/security/environ file can also contain similar environmental commands,
but there is a stanza in this file for each user. When a user′s login is complete,
his initial environmental and shell variables are from (in order):

 1. /etc/environment
 2. /etc/profile

Chapter 3. User Accounts 35

 3. /etc/security/environ
 4. $HOME/.profile
 5. A shell configuration file specified by the ENV environmental variable (if

used), or $HOME/.cshrc (if it exists and the C shell is used).
 6. $HOME/.Xdefaults , if it exists and AIXWindows is used.

The first three files in this list are system files and must be protected. Improper
environmental or shell variables can create many security holes. The last three
items are owned by the user, and the user can alter them in any way he wishes.
Only the owner should have write access to these files, and there is no real
reason for anyone else to have read access.

When assisting a user, try not to su to root from his session. If you do this, you
are using his environment (with his PATH), and this opens a large number of
exposures. If you must do this, then use full path names for all commands you
use while executing as root.

Beware of a user who changes IFS (input field separator) in his profile. Do not
allow it to be changed in /etc/profile . A knowledgeable user can do clever
things with IFS and cause endless trouble.

Beware of a user experimenting with ASCII terminal ″tricks.″ It is possible to
send control strings to many ASCII terminals to set up various function keys. A
clever user can send, for example, a series of commands ″hidden″ with the
normal operation of a function key. In the proper circumstances, such as when
root uses the terminal, these ″hidden″ commands can be used to cause
commands to be executed under his UID without his knowledge.

The who am i command displays the login name associated with your terminal.
This is unchanged by usage of the su command. The command whoami displays
the current (effective) userid and changes when su is used. You normally want
to use whoami and not who am i .

Never never never place the current directory in the PATH for root. If you log
into the system as root, AIX will automatically remove the current directory (if it
is specified) from the initial PATH. You can (but should not) restore it to the
PATH after the login is complete.

3.9.1 Repairing the root Userid
If something goes wrong with root, you have a serious problem. Forgetting the
root password is a common problem. New system administrators, while
experimenting with various security options, may make the system so secure
that no one can use it. To ″break into″ the system in order to repair it:

 1. Find your system installation tape. (A CD-ROM can also be used.)

 2. If possible, bring the system down by using shutdown -F . (Only root can use
this command.)

 3. Insert the tape in the tape drive, turn the key to the SERVICE position, and
then press the yellow reset button. (You may need a power off/on cycle
instead.)

 4. Press F1 and Enter at the appropriate prompt.

 5. Select ″Start Maintenance Mode for System Recovery″ from the displayed
menu.

36 Elements of Security: AIX 4.1

 6. Select ″Access a Root Volume Group″.

 7. Select ″Continue″ and respond to any additional prompts.

 8. Select ″Access the Volume Group and start a shell″. When this completes
you have normal access to all your system files, and you are executing as
root.

 9. You may need to set TERM=l f t and EXPORT TERM in order to use your
display in full-screen mode.

10. Use smit or other commands to repair your system.

11. Do a sync to ensure that the disk has been updated.

12. Perform shutdown -F when you have finished.

13. Return the key to the NORMAL position.

14. Re-boot the system from the hard disk.

Remember to give root a password when you are up and running again under
your own system. Please note that this method of ″breaking into″ the system
requires (1) physical access to the key for the RISC System/6000 console, and (2)
a ″boot tape″ that is distributed with the AIX software.

3.9.2 Password Cracker Programs
Password cracker programs are available from a variety of sources (but not
directly from IBM). These programs read encrypted passwords from /etc/passwd
files and attempt to guess passwords that, when encrypted, will match a
password in the file. Typically, the user provides a list of trial words (a
“dictionary”), and the cracker program will try each word (and a number of
permutations of each word) in the list.

In normal use, AIX does not maintain encrypted passwords in /etc/passwd ;
rather, they are maintained in /etc/security/passwd , in a different line format.
Nevertheless, most cracker programs can be readily modified (if the source code
is available) to work with /etc/security/passwd . The user must have read access
to this file, of course.

If you (an administrator) have a cracker program available, and have some time
to work with it, we recommend using it. It cannot harm your system (assuming
you have a trustworthy program), and may find any number of poor passwords
set by your users. However, we do not recommend granting read access to
/etc/security/passwd to any person who is not an authorized administrator.

The fact that AIX has moved the encrypted passwords where they are not easily
available to cracker programs does not mean that you should not attempt to
enforce good password quality.

Chapter 3. User Accounts 37

38 Elements of Security: AIX 4.1

Chapter 4. AIX File Security

Other than the login process, file security is the most apparent element of
security to most AIX users. The discussion in this chapter considers only local
files, files that are not accessed through a LAN or remote connection. The basic
elements controlling file security are:

• The permission bits associated with the file

• The permission bits associated with the directory containing the file name

• The permission bits in all the directories in the file′s path

• Extended access control list parameters, if any

• The owner of the file

• The group-owner of the file

• The owner and group-owner of the file′s directory

• The owners and group-owners of all higher-level directories in the file ′s path

• Programs executing with the effective userid of root

The individual elements are not complex, but the effect of various combinations
can be confusing. This chapter discusses each of the listed elements.

4.1 File Systems
UNIX documentation discusses “files” and “file systems.” This chapter is about
files, but it is important to understand the terminology involved.

There are two common uses for the term “file system”in AIX. One is the total
view or complete tree structure incorporating all the files from the top or root (/)
directory, including all the other directories and files. This usage of the term is
technically incorrect, but is widely used, nevertheless. “I don ′ t want any TCP/IP
user to access my file system.” “My file system never seems to have fsck
problems.” These two quotes informally refer to all the files on the owners ′
systems. They are using “file system” to mean “all my files.”

The technically correct meaning of “file system” is a contiguous space on a disk
(or partition of a disk), or a logically contiguous disk area (managed by a logical
volume manager) that contains all the controls and control blocks needed to
manage its own internal space, including the allocation of files and directories.
A normal UNIX file system has a super block, chains, and inodes as part of this
control structure. In the case of JFS, one can equate “file system” with “logical
volume.”

AIX recognizes several types of file systems, and can have multiple instances of
all of these in a given system:

• Journaled File System, the normal AIX File System.
• Network File System, for file sharing across networks.
• CD-ROM File System, for reading CD-ROM disks.
• Distributed File System (DFS), an optional component of the distributed

computing environment (DCE).
• (Raw disk volume, not containing a standard file system. A number of

database and other types of products use raw disks. The system may use

 Copyright IBM Corp. 1994 39

raw disk volumes for paging space, dump space, and other specialized
uses.)

• (Diskettes do not normally contain file systems.)

A Network File System and a CD-ROM File System are special cases and are not
discussed here. The Journaled File System is the standard AIX file system. The
″journal″ part of the name can be misleading since ″journal″ is often a database
related term. AIX does ″journal″ (in the proper database sense) the changes to
inodes.32 That is, inodes changes are protected from corruption due to system
failures. This is a substantial improvement over older UNIX systems that were
very sensitive to file system (inode) damage.33 The journal action does not apply
to data in files. Data integrity in AIX is similar to that in other UNIX systems. (Of
course, database products running under AIX may perform their own journal
functions for their data.)

Generic UNIX documentation often refers to a local file system. For AIX, this is a
journal file system (JFS). There are also references to a virtual file system(VFS).
This is simply a coding and design technique that provides a uniform
programming interface regardless of what type of actual file system is being
used. JFS, DFS, NFS, and CD-ROM file systems are accessed through the VFS
interface, providing a common API for the user. From the user and administrator
point of view, VFS is all under-the-covers and requires no action.

The “journal” part of JFS works automatically. There is no user or administrator
involvement. The fsck command has been modified to invoke JFS recovery
checking. Booting AIX automatically runs fsck (including the JFS recovery
functions), and no other actions are normally required.

A basic AIX system has several logical volumes and file systems:

LV FS VFS type Mount point or use

hd1 /dev/hd1 JFS /home
hd2 /dev/hd2 JFS /usr
hd3 /dev/hd3 JFS /tmp
hd4 /dev/hd4 JFS /
hd5 /dev/hd5 --- (boot)
hd6 ------- --- (paging)
hd7 /dev/hd7 --- (sysdump)
hd8 ------- --- (jfslog)
hd9var /dev/hd9var JFS /var
hd10 /dev/hd10 JFS /usr/sys/inst.images

Notice that a separate logical volume (hd8 in this example) is used by JFS as the
journal area. The special logical volumes and the logical volume manager itself
are normally manipulated through smit , and this requires root authority. Other
than protecting the root password, there is no routine security administrative
work involved with the special logical volumes.

32 An inode is a control block in a file system that keeps track of various pointers to files and free space.

33 The well-known fsck command was frequently needed to repair this damage.

40 Elements of Security: AIX 4.1

The mount Command
A file system must be “mounted” before it can be used. File systems can be
mounted automatically upon startup or as needed by using the mount and
umount commands. In general, root authority is needed to mount or unmount
file systems. Either smit or the mount/umount commands may be used.

The mount command is intended to have three security levels, depending on the
authority of the user invoking it. Any user can execute the command with no
arguments. This will return the list of mounted file systems (JFS, NFS, and DFS).
Members of the system group can use the command (with appropriate
arguments) to mount a file system described in /etc/filesystems . The file system
must be currently unmounted, and the mount parameters cannot be altered from
what is specified in /etc/filesystems . Lastly, root can do almost anything with
mount , mounting any file system over any directory, and overriding any
parameters in /etc/filesystems .

In addition, any user can mount directories over other directories to which he
has write access. There is no direct security violation involved in doing this, but
the results can be extremely confusing for the user (and perhaps for others
accessing his files). Depending on your environment, you might consider (and
experiment with) removing the mount from “world” access. Again, this is not a
security consideration, but might be a usability consideration. (Later releases of
AIX may remove the capability for a normal user to mount anything.)

CD-ROMs present, potentially, a serious security exposure. Files can be
executed from a CD-ROM, including suid root files. Devices for writ ing CD-ROMs
are becoming commonly available. Someone could create a dangerous suid
root program on an external system and create a CD-ROM containing this file. If
mounted on your system, the dangerous program will execute with suid root
authority. You cannot control the external creation of CD-ROMs. You can
control how CD-ROMs are mounted on your system. When you mount a
CD-ROM, you can specify -o nosuid. (This is documented in the man page for
mount .) You should use this when appropriate; you should probably include this
option in any batch files you create to mount CD-ROMs.

4.1.1 Private File Systems
Adding a private file system involves creating a new logical volume, and then
creating a file system within this logical volume. This is usually done through
smit .

Simple workstations, using basic AIX facilities, may not need any private file
systems. A user can store his private data in his home directory (which is
normally /u/userid) and in additional directories he creates below his home
directories. We recommend that you discourage the use of private file systems
on workstations unless there is a particular need for them.

Major software products, such as a database package or an office systems
package, often reside in private file systems.34 If such products are installed with
the workstation, private file systems may be required.

Servers, typically with several application products installed (such as database
managers), often have many file systems in addition to the basic AIX file

34 The install process for these products may create the file system.

Chapter 4. AIX File Security 41

systems. The administrator (working as root) must create whatever additional
file systems are required.35 In general, the administrator will elect (through smit)
to have the additional file systems automatically mounted whenever the system
is booted.

The administrator must be concerned with the security controls of the new file
systems. The ownership and permissions of the mount-point directory are
important since all the contents of the file system will be under this directory.
The file security management discussions in this chapter apply to locally-created
file systems, as well as to system-created file systems.

If you create additional file systems, we recommend that the directory mount
points have permission bits of -rwx------- (octal 700). Understand that you mount
“over” the directory mount point, so any user files or directories below the
mount directory are overlayed by the newly mounted file system and will not be
available till you unmount the file system again. Installations with extreme
security requirements can use a portable file system, that is unmounted and
disconnected from the computer when not needed.

Removable file systems (which are usually “private”) file systems have a unique
exposure. When mounted, they function as normal file systems, including suid
(and especially suid root) functions. A user could take his portable file system
somewhere else and add many suid root programs. When mounted on your
system, all these suid root programs could be disasterous. You have some
control over mounting private file systems, since root or system (in some cases)
authority is needed to mount . One of the mount options is nosuid. We
recommend you always use this option when mounting portable file systems
(including CD-ROMs), and (possibly) when mounting any private file system.

AIX does not support Journaled File Systems (or any other easily used file
system) on diskettes.36 AIX can read and write DOS-formatted diskettes with the
dosread and doswrite commands. (These commands may not be included in the
smallest client version of AIX 4.) Diskettes in tar format can also be used.

4.1.2 Inodes and Links
The normal UNIX file systems (including AIX′s JFS) use a level of indirect file
control that is usually hidden from the user. The administrator must understand
some of the basic elements of this, since they are important for file security.

UNIX file access is usually like this:

directory entry --> inode --> data blocks

That is, the directory entry for a file does not point to the data for the file. It
points to an inode that, in turn, points to the data.37

The security permission bits are attached to the inode, not the directory entry.
Also, multiple directory entries may point to the same inode. A directory entry

35 This may require a certain amount of disk space planning. Some understanding of LVM is required. Disk space planning is
not discussed here.

36 Solely from a security point of view, this is good. Diskette-mounted file systems, containing suid programs, can form a major
security gap. (Predefined fi le systems in /etc/filesystem can specify a nosuid option to avoid this exposure if the predefined
definition is used.

37 This discussion ignores the details of inode data and indirect addressing through inodes. These details are not relevant to
routine security processes.

42 Elements of Security: AIX 4.1

contains a “name” for a file, such as /u/trial/data. An inode has an identification
number, but no fi le “name.” (A number of low-level UNIX commands exist to
manipulate inodes directly. These commands should not be used by normal
users, although they do not bypass any security functions.)

A more general picture might be:

/u/trial/data -->
 /xyz/j/g34/check --> inode 317 --> data blocks
 /joes/stuff -->

In this example, a single file (based on inode 317 within some file system) has
three directory “l inks.” The same file has three very different “names.”
Permission bits (and the UID and GID) are stored in the inode. Accessing the file
through any of the names will provide the same permissions and owner controls.
These extra names are provided by symbolic links or hard links. (A symbolic link
can function across file systems and is not deleted if the target inode is deleted.
A hard link works only within a given file system and can be a controlling
element in deleting the inode and file data.)

Similar links can exist within directory levels. For example, the /xxx directory
could be linked to the /etc directory. This means that file /xxx/my/data is really
/etc/my/data. The base AIX system does some of this by default. For example,
there is no /u file system. Instead, /u is linked to /home . File /home/her/data
can also be accessed as /u/her/data. The same file is accessed in both cases,
although different directory structures are used. The security implications of
directory links are discussed later.

4.1.3 Ownership
Every file (including directories) has an owner and a group. The owner and
group identifiers (the UID and GID) are stored in the inode. The owner is,
initially, the user who created the file. The group is the current group of the
owner when he created the file.38 Root can change the owner of a file by using
the chown command, and can change the group owner with the chgrp command.
In AIX, normal users cannot use the chown or chgrp commands, because these
functions can indirectly lead to security exposures. In some versions of UNIX,
these two commands are available to normal users.

The UID and GID owners of a file are set when the file is created and are only
changed by explicit change commands. Note that ownership is by UID (owner)
and GID (group owner), not by userid and groupid. If a userid (and his
corresponding UID) is deleted from the system, files owned by that UID remain in
the system. Removing a userid does not remove his files. However, there is no
longer a userid associated with the UID, and the files are said to be “unowned.”
If another userid is later assigned the same UID, he then owns all the files
associated with that UID.

If you are concerned about this, you might lock a user account instead of
removing it. In this way his files are still “owned.” Files owned by a user can
be located with the find command, although, if NFS or portable disk drives are
involved, this becomes complex.

38 Another option for assigning group ownership is discussed later.

Chapter 4. AIX File Security 43

The group or group-owner is the GID of a group defined in /etc/group . Any
member of this group (as defined in /etc/group) has whatever rights a
group-owner has for the file.

You should understand how the ownership of a file is affected by the mv and cp
(move and copy) commands.

• The cp command always creates a new file, and the user of the command
becomes the owner of the new file. The user must have sufficient
permissions to read the source files. (This requires at least execute
permission for all the directories in the path of the input file, and read
permission for the file itself.) He must have write permission for the target
directory.

• If the mv command is used to move a file within a file system, the ownership
of the file is not changed. The user of the mv command must have write
permission in the target directory, and sufficient permissions to read the file.

• If the mv command is used to move a file to another file system, a new file is
created in that file system, and the current user is the owner of the file. The
user must have write permission in both the source directory (to delete the
file) and the target directory (to create a new file). He must also have
appropriate read permissions for the source.

4.1.4 Permission Bits (Basic)
Files (and directories) have permission bits. An administrator must thoroughly
understand these. These are sometimes referenced as “mode” bits, but we will
use the term “permission bits” or “permissions.” The basic permission bits are
quite simple.

There are 12 permission bits:

• Three system bits (which are not directly displayed),

• Three owner bits that describe what the owner is permitted to do,

• Three group bits that describe what any other user who is a member of the
group may do, and

• Three other or world bits that describe what any other user can do.

Permission bits are often displayed as nine bits. (The three high-order system
bits are displayed in special ways.) A typical permissions display is:

rwxr-xr--

The first three characters displayed are the owner bits, the next three are the
group bits, and the last three are the other bits. Within each three-bit group, the
first bit is for read permission, the second for write permission, and the last for
execute or search permission.

By convention, a letter means the bit is on, and a dash means it is off. In the
example above, the owner has read/write/execute permission, anyone in the
file′s group has read/execute permission, and everyone else has read
permission. Permissions are not hierarchical; write does not include read, and
execute does not include read.

Permission bits are often written in octal. The above example, in octal, is 754.
Octal is convenient because the first digit represents the owner ′s permissions,
the second digit is the group ′s permissions, and the third digit is everyone else′s

44 Elements of Security: AIX 4.1

permissions. When using octal notation, sometimes four digits are shown. In
this case, the first digit contains the system permissions (which are explained
later).

The execute permission is not as simple as it might appear:

• For binary programs (produced by a compiler, and linked for execution) it
functions in the obvious way.

• Shell scripts are only partly limited by execute permissions. If the name of a
shell script is entered on the command line in the normal manner, the
execute permissions are examined. If the shell script is named after a “dot”
command, or named when starting a new shell, the execute permissions are
not examined. In these cases, the read permissions are examined instead.
The logic, such as it is, is that the current shell is reading the shell script as
a data file; the AIX kernel is not executing the shell script.39

• The meaning of execute permission for directories is described in several
sections below.

4.2 Basic File Security Concepts
The basic elements of AIX file security40 are quite simple. The permission bits
for the file and the permission bits for the directory containing the file are the
key elements. In UNIX, a directory is a type of file. As a file, it has permission
bits in its own inode. Permissions to read and write in a directory are
independent of permissions to read and write the files named within the
directory.

This is a critical concept, and is not intuitive to anyone whose background
includes DOS, OS/2, or MVS.41 A user with write permission for a directory can
create, rename, or remove a file. Directory execute permission is required to
access the directory (when looking for a file, for example).

A file′s permission bits are involved when opening, reading, writing, updating, or
executing the file. Directory permission is required to find a file before opening
it for use.

The owner of a file or directory can always change the permission bits. The
owner is usually the user who created the file or directory, but ownership can be
transferred (by root) to another user. Three permission bits apply to the owner;
the owner can set these to protect himself against his own mistakes. For
example, the owner of a file can set the owner permission bits to “r-x.” This will
prevent the owner from writing in the file. However, the owner can always
change the permission bits for the file (using the chmod command) if he really
wants to write in it.

Directory permissions are especially important for AIX system files, such as
those in /usr . You should not allow users to add files to /usr and its
subdirectories (unless there is a good reason for doing so). You control this by

39 This is standard UNIX behavior, and would not be practical to change for AIX.

40 Unless otherwise qualified, ″f i le″ means an ″ordinary JFS fi le″ in the AIX sense.

41 It is intuitive to those with AS/400 backgrounds, because the AS/400 separates the authority to control a file (create, delete,
and so forth) from the authority to use the data in the file.

Chapter 4. AIX File Security 45

not allowing write permission for ″others″ in any of these directories.42 This is the
default condition when you receive AIX. You can list directory permissions with
the command:

ls -ld dirname

where dirname is the pathname of the directory you wish to list. (You can also
display directory permissions by listing (with the ls -l command) the contents of
the directory which is one level above the directory whose permissions you
want.)

A directory cannot be executed, and the “x” permission bit is used to control the
ability to search the directory. To cd to a directory, or to use it as part of a path
name, one must have search permission for the directory. To list the files in a
directory, one must have read permission for the directory.

You (an administrator) must care for permission bits in directories because all
other security depends on these. Consider the following extreme example:

 1. I (a bad guy) find that the permission bits in the root directory are set to
rwxrwxrwx. This means that I (a normal user) can write into the root
directory.

 2. I rename /etc to /trash, using the mv command. I can do this because I can
write in the root directory.43

 3. The system soon crashes or hangs because all the /etc files have
disappeared. The administrator will need to boot from a maintenance
CD-ROM or tape and spend time diagnosing and fixing the problem.

While this is not a very useful attack on a system, it illustrates the critical nature
of directory permissions. A more sophisticated attack, in the same situation,
might be to create a new directory and copy all the existing /etc contents into
the new directory. I (the bad guy) am the owner of all these copied files. I then
rename /etc to /trash and rename my newly-made directory to /etc. The system
continues to function because all the /etc files are present, in their copied form.
I (the bad guy) am now the owner of all the operational /etc files, and I can alter
these as I please.44

This last type of attack can be used at any level of the directory tree. If a user
can write into a directory, he can subvert all files and subdirectories in the
directory. That is, any files and lower-level directories can be copied and
manipulated. The copied versions can, in effect, become the “real” versions.

The administrator must ensure that system directories (at any level in the
directory tree) are not writable by normal users. In general, no directory should
be writable by the “world.” The /tmp and various lost+found directories are
special cases, discussed later. As distributed, AIX contains a number of
world-writable directories. These can be listed with the command:

find / -perm -0007 -type d -print

42 You must also be careful not to add users to any groups that have write permission for system directories or fi les.

43 I cannot remove /etc because this implies removing the files and subdirectories contained in the directory and I do not have
authority to do this. I can delete a simple file or an empty directory (by using rm -R name)

44 In practice, this attack would need more steps. As I would be the owner of the new /etc files, programs requiring suid root
would not function properly. This is not the appropriate document to describe the full details of this particular attack.

46 Elements of Security: AIX 4.1

Some of these world-writable directories use the “sticky bit,” explained later, as
an additional control.

The use of directory permissions is so important that we will restate the basic
principles again:

• To use a file (as data or an executable program) the user must have search
(that is, execute) permission for all directories in the path. He must also
have appropriate permission for the file itself, of course.

• To list a directory (with the ls command, for example), a user must have read
permission for the directory.

• With write permission for a directory, a user can add new files and
subdirectories, move (rename) files, and possibly delete files and
subdirectories in the directory.45 These actions can be taken regardless of
the permissions on the files in the directory. In one way or another, a user
can subvert any file, lower-level directory, or files in a lower-level directory if
he has write permission to the directory.

As distributed by IBM, AIX has all file and directory permissions, owners, and
group owners correctly set for secure operation. You should consider the
security consequences before changing any of these controls.

4.2.1 The ls Command
The ls command is probably the single most important command for you as a
security administrator. (The find command is the second most important.) You
must understand the detailed information it displays. AIX also provides the li
command that is very similar to ls . We suggest you concentrate on the ls
command, since it is standard in all UNIX systems, and learn to use several of
its optional flags.

The basic ls command displays a list of the files in the current directory and
displays nothing else.

For more information, you will normally use one of the following forms:

ls -al
ls -ld
ls -l /some/file/name
ls -ld /some/directory/name

The first form, ls -al , displays information about all the files in the current
directory, including “hidden” files (whose names begin with a period). The
second form, ls -ld , displays information about the the current directory itself.
The third form, ls -l /some/file/name , displays information about a particular file.
The last form, ls -ld /some/directory , displays information about a specified
directory.

The general format of the display is shown in Figure 1 on page 48. (The inode
number, shown in the figure, is not displayed by the forms of ls shown above.
The flag “i” can be used to display inode numbers, but these are not useful in
most situations.)

45 Deleting a subdirectory requires permissions to delete all the fi les in the subdirectory.

Chapter 4. AIX File Security 47

Figure 1. Interpreting Fields Reported by an ″ls″ Command

The set UID, set GID, and sticky bits (all shown in the figure) are described
below.

The owner′s userid is shown by all the long forms of li . Remember that a file (or
directory) owner can change any of the attributes of the file except the owner
and group names. Only root can change these. An inode contains the UID and
GID of the owner, not the names. If the UID (or GID) is no longer registered in
/etc/passwd (or /etc/group), then a number (the UID or GID) is displayed instead
of the name. This is an indication of an ownerless file.

48 Elements of Security: AIX 4.1

A great deal of information relevant to security is packed into li output, and you
should understand all of it.

4.2.2 Permission Bits (Advanced)
UNIX uses 12 permission bits. Of these, nine are the basic r/w/x permissions for
owner/group/other, and were described previously. The three remaining bits are
somewhat more complex. They are:

 1. The set UID (or suid) bit

 2. The set GID (or sgid) bit

 3. The save-text (or sticky) bit

These bits are critical for security controls, and are displayed by modifying the
normal “rwxrwxrwx” string used to display the basic permission bits. For
display purposes, these bits modify the three “x” bits in the normal display.

The suid bit is displayed by changing the “x” in the owner “rwx” to an “s,” and
so forth. This is shown in Figure 1 on page 48.

The suid bit means that the program will run under the authority of the UID of the
owner of the file. (Executable files are normally executed under the authority of
the UID of the user who is logged into the system and asking to have the file
executed.) For example:

-r-sr-xr-x 1 root sys 3254 Jun 1 11:30 myprog

has the suid bit set. If I (logged into the system as user joe) execute myprog , it
will execute with root authority. Since root can bypass almost all security
controls, this could be dangerous.46 In this case, myprog might be a copy of the
Korn shell (or something similar). By executing myprog (with suid to root), I
effectively become root. I can enter any system command using this shell, and
all the commands will run under root′s authority. This situation, a shell with suid
to root, is a prime goal of any system intruder.

These bits are set with the chmod command, using either symbolic operands or
a 4-digit octal operand.

The suid bit can be set (using the chmod command) only by the owner of a file
or by root. It is automatically removed by the cp (copy) command. There is no
direct way for a normal user to create a suid root file.

The suid function can be used with owners other than root. It can be used, for
example, to ensure that a file is accessed only by a certain program. For
example:

-rw------- 1 joe eng 5432 Jun 2 13:45 mydata
-r-sr-xr-x 1 joe eng 2345 Jun 1 11:30 myprog

permits anyone to execute myprog . Only userid joe can access mydata . Since
anyone can execute myprog , and since myprog uses suid to execute as joe,
anyone can access mydata only by executing myprog . The assumption is that

46 The suid root programs supplied as part of AIX can be trusted to behave correctly. As an administrator, you must be very
careful about installing new suid root programs that anyone can execute.

Chapter 4. AIX File Security 49

this program contains whatever security controls it needs to manage proper
access to mydata .47

A typical AIX system has a few hundred programs that suid to root. The
administrator of a multiuser system should ensure that any additions (new
programs that suid root) are known, trusted programs. AIX provides a utility,
tcbck , that can help manage this. It is described in Chapter 7, “Trusted
Computing Base” on page 77.

The “set group” (sgid) function works just like the suid function, using a file′s
group identity instead of the owner identity. The sgid bit has a special meaning
when used with a directory, where it determines how group ownership for new
files is assigned.

AIX ignores the suid and sgid bits when executing shell scripts. That is, only
compiled “object code” programs can suid to another UID for execution. Some
UNIX systems permit shell scripts to suid. In principle, this is useful. In practice,
it is an endless source of security breaches and has been removed from AIX for
this reason.

The sticky bit has been used for multiple purposes. In earlier systems it was
used to indicate that a program should be retained in memory after execution, in
order to improve system performance. This function is not used in modern UNIX
systems. Instead, it is used with directories to further limit who may alter entries
in the directory.

In a normal directory (without the sticky bit), any user with write access can
move or remove files in the directory. This is a severe exposure with
directories, such as /tmp , that are world-writable. When the sticky bit is set, only
the owner of a file can delete it, even if the directory is world-writable. (As might
be expected, the directory owner and root can also delete files from the
directory.)

Note that any security information effective in a specific directory is not
propagated to lower directories; each directory obeys only its own permission
bits.

Permissions (for files or directories) are not cumulative for the owner, group,
world fields. In general, the owner field provides more permissions than the
group field, and the group field more permissions than the world field, but this is
not required. For example:

-r--rw-rwx 1 joe xyz 3210 Jun 3 15:15 mystuff

has rather unusual (but valid) permissions. The owner (joe) cannot write or
execute this file. (He can change the permissions, of course, and add more
permissions for himself, but, as shown here, he cannot write or execute the file.)
Any member of group xyz can read or write the file. Anyone else (other than the
owner and any members of the group) can read, write, or execute the file.

Stated a different way, the permissions assigned to the owner, group, or world
are also restrictions. The owner, for example, is not considered part of the

47 You should completely understand this example. It incorporates many of the key elements of permission bits, and represents
a practical way to control use of shared data.

50 Elements of Security: AIX 4.1

“wor ld . ” This aspect can be used to exclude certain users from accessing a file.
This can be done by creating a new group containing all the users to be
excluded. The file′s group-owner is then changed to this new group name. The
group permissions are set to ′---′. The result is that no member of the group can
access the file, even if the file has full access for the rest of the world.

File permission bits are verified when a file is opened. The commands mv and
rm do not open a file (unless the mv is to another file system). Thus it is
possible to remove a file that you do not have permission to open, as long as
you have write (w) permission for the directory containing the file.

This can be prevented by use of the sticky bit (SVTX). When the file is a
directory, the sticky bit is used for additional security. When it is set, only the
owner of the directory or the owner of a file in the directory can delete or
rename the file, even if ″the world″ has write permission to the directory. This is
useful for files in /tmp because this directory must have write permission for the
“wor ld . ” Error logs, daily security or accounting reports, and similar files are
usually written in /tmp . This use of the sticky bit prevents just anyone from
deleting such files. We recommend setting the sticky bit for /tmp . However,
please note that some major software packages may not work (or require
special setup) in this case. The sticky bit is set with the chmod instruction.

Directory Permissions Summary
To summarize, permission bits used with directories have the following
meanings:

• The suid bit is not used.

• The sgid bit is also named the group inheritance flag when used with a
directory. It controls what group name (actually, what GID) is assigned to
new files created in the directory (including new subdirectories). If this flag
is set, the GID assigned to the directory itself is used as the GID for any new
files created in the directory. If the flag is not set, the GID of a new file is the
current group of the user who created the file. (A user can change his
current group with the newgrp command.)

The group inheritance function can be set as the default for a file system by
defining the grpid parameter in the stanza for the file system in
/etc/filesystems or when the file system is mounted.

• The sticky bit means that, even though the directory is writable by the
current user, only the owner of a file in the directory can delete (“unlink”) a
file. (The owner of the directory and root can also delete files.) When used
this way, the bit is sometimes called the link permission flag. Note that this
flag also prevents nonowners from renaming a file (with the mv command).
This flag is commonly used for shared directories, such as /tmp , and various
spool and mail directories.

• Read permission (in owner, group, or world fields) permits a user to read the
directory (but not the files within the directory). The ls command, among
many others, reads directories. It will not list a directory unless the current
user has read access to the directory.

Read permission in a directory is required in order to use wildcards when
referencing the directory.

• Write permission (in owner, group, or world fields) permits a user to add,
delete, or change entries in the directory. A file can be added, deleted, or
renamed. An existing file cannot be read or written (unless the user has

Chapter 4. AIX File Security 51

appropriate permission to the file), but it can be deleted or renamed since
these actions take place in the directory, not the file itself. This is why
directory write permissions are so important for security administration.

• Execute permission is called search permission when applied to a directory.
It permits the directory to be used as part of an explicit path name. To
access file /u/mydir/file3 , the caller must have search access to the root
directory, the u directory, and the mydir directory. Search permission does
not permit listing or reading the whole directory; it permits use of a single
entry in the directory. The user must, by some external means, know the
name of the entry (that is, the path name) of the file he wants.

4.2.3 The umask Variable
Every file (and directory) has permission bits. The owner can change them with
the chmod command. The initial, default, permissions set when a file is created
are controlled by an environmental variable named umask. For reasons going
back to the early days of UNIX, the umask value is used in an odd way. Default
permissions are established by assuming permissions (“rwxrwxrwx” or octal 777
for directories, or “rw-rw-rw-” or octal 666 for normal files) and removing the
permission bits specified in the umask (which is always expressed in octal).

The default umask is 022 (octal). Therefore, default permissions are:

666 removing 022 = 644 = rw-r--r-- (for a file)
777 removing 022 = 755 = rwxr-xr-x (for a directory)

The umask is an environmental variable that can be changed by the user with
the umask command (which is a shell command). There is no way to enforce a
standard value for users. The default values are suitable for most uses. A
different default can be set by placing a umask command in a user′s
$HOME/.profile file, for example. However, the user can change the value at any
time. A user ′s initial umask value can be set through smit .

You can check your default with the umask command (with no operand).

4.2.4 File Timestamps
UNIX systems, including AIX, maintain three timestamps for files (including
directories). These can be important for resolving security questions. The
timestamps are:

 1. atime. This is the time the file was last accessed. In effect, this is the last
time the file was opened.

 2. ctime. This is the last t ime the inode for the file was changed. (It is not the
creation time, unless file creation was the last event for the inode.) The
inode is changed when permissions are changed, the owner is changed, the
file size (number of clusters) is changed, and so forth.

 3. mtime. This is the last t ime the contents of the file were changed. This
generally means the file was opened for output. This time can easily be
manipulated by root with the touch command. For example, the command
touch 0101000095 afile will set the mtime to Jan 1 1995. (Only write authority
to the inode is needed to manipulate the times, but the AIX touch command
will not perform this function for normal users.)

The long forms of the ls command normally list the mtime. The -c flag can be
used to list the ctime instead. The -u flag can be used to list the atime. The find
command can reference all three timestamps.

52 Elements of Security: AIX 4.1

4.3 The ACL Commands
AIX has an additional security function for files. This is the access control list
(ACL) facility. This is not a standard part of “traditional” UNIX. Modern UNIX
systems usually have an ACL-type function, but the commands and exact
functionality differ between vendors.

AIX ACLs can provide much finer-grained access control than can be obtained
with permission bits. As a general case, explicit ACL control is not normally
used with workstations. It may be used within specific applications on servers.
That is, normal AIX usage typically does not involve individual users randomly
assigning ACLs as the mood strikes them. (Although such is possible and there
are no controls to prevent it.) A typical usage would be a planned set of ACLs
for the payroll department ′s files, for example.

Every file (and directory) has a “base ACL” because the standard permission
bits (old term) are also the base ACL (new term). The extended ACL functions
(new term) are usually simply called the ACL functions.

Base Permissions
Base permissions are shown by ACL-related commands in the following format:

attributes: SUID, or SGID or SVTX in any combination
base permissions:

owner(name): rw-
group(group): r-x

others: -wx

where:

SUID means setuid
SGID means setgid
SVTX means Savetext (sticky bit)

Extended Permissions
Extended permissions allow the owner to define access to a file more precisely.
Extended permissions extend the base file permissions (owner, group, others) by
permitting, denying, or specifying access modes for specific individuals, groups,
or user and group combinations. Any user can create an extended ACL for a file
he owns.

The permit, deny, and specify keywords are defined as follows:

permit grants the user or group the specified access.
deny restricts the user or group.
specify precisely defines the file access.

If a user is denied a particular access by either a deny or a specify keyword, no
base permission or general extended permission can override that denial. When
both a user and group are defined in an extended permission, only the specific
user and group combination receives the access. There is an ″and″ relation
between the elements in a list. The enabled keyword must be included in the
access control information for the extended permissions to take effect. The
default value is the disabled keyword. Using chmod with an octal operand is one
way to set the disabled state.

Extended permissions are shown in the following format:

Chapter 4. AIX File Security 53

attributes: SUID, or SGID or SVTX in any combination
base permissions:

owner(frank): rw-
group(system): r-x

others: ---
extended permissions:

enabled
permit rw- u:dhs
deny r-- u:chas, g:system
specify r-- u:john, g:gateway, g:mail
permit rw- g:account, g:finance

The first line of the extended permissions describes its status: enabled or
disabled. If disabled, the extended ACL information has no effect; only the base
permissions are effective. The second line explicitly grants dhs read (r) and
write (w) permission on the file. The third line specifically denies chas read (r)
access only when he is a member of the system group. The fourth line grants
john read (r) access if he is a member of both the gateway and the mail groups.
The fifth line permits read and write access to this file for users that belong to
both the account and finance groups.

The meaning of an ACL can become complex for a user who is a member of
multiple groups. An ACL might include entries for several of the user′s groups,
and these may conflict. For example, a user may belong to GROUP1 and
GROUP2. A given ACL may provide read access for GROUP1 and execute
access for GROUP2. These conflicts are resolved in this order:

 1. If a SPECIFY operand exists for any of a user ′s groups (or for his own
userid), the SPECIFY will set a maximum access level. If multiple SPECIFYs
exist (for different groups and/or the userid), the least-common denominator
of all the SPECIFYs is used. Access rights will never be higher than this, and
may be less, due to DENY permissions.

 2. All (positive) access permissions (for the user and all his groups) are added
together.

 3. All DENY (negative) access permissions (for the user and any of his groups)
are then subtracted. The result is further limited by SPECIFY restrictions (if
any).

A DENY function, in a sense, is more powerful than PERMIT functions because a
single DENY can override any number of PERMITs. This result may surprise
users and administrators, but it is a logical result of ACLs, DENYs, and
many-group operation. If a user is unable to access a file, and you cannot
understand why, you should check the ACL for any DENYs associated with
groupids. The user may be a member of the DENYed group. The same effect
can be caused by group-level SPECIFYs.

The ACL commands referenced here are primarily for extended ACL functions,
but they can be used instead of chmod to control base permission bits also. The
commands are:

• aclget gets the ACL for a file
• aclput sets the ACL for a file
• acledit combines aclget and aclput .

The acledit command lets the owner change the access control information for a
file. This command displays the current access control information and lets the
file owner change it (using the editor specified by the EDITOR environment

54 Elements of Security: AIX 4.1

variable). Before making any changes permanent, the command asks if you
want to proceed.

The EDITOR environment variable specification must specify the full path to the
editor.48 For example:

EDITOR = /usr/bin/vi
or EDITOR = /usr/bin/e

(If the acledit command is operating in a trusted path, the editor must have the
trusted process attribute set. This is discussed in a later chapter.)

The aclget command displays the access control information of a file. (An outfile
parameter can be used to send the displayed information to a file.) The
information includes attributes, base permissions, and extended permissions.
For example:

To display the access control information for the file status enter:

aclget status

To copy the access control information of the plans file to the status file
(using a pipe), enter:

aclget plans | aclput status

The aclput command sets the access control information of a file. (The -i flag can
be used to obtain input from a file rather than from system input. If the access
control information in the file specified by the InFile parameter is not correct
when you try to apply it to a file, an error message preceded by an asterisk is
added to the input file.) For example:

To set the access control information for the status file with information
stored in the acldefs file, enter:

aclput -i acldefs status

To set the access control information for the status file with an edited version
of the access control information for the plans file, you must enter two
commands.
First, enter:

aclget -o acl plans

This stores the access control information for the plans file in the acl file.
Edit the information in the acl file, using your favorite editor. Then enter:

aclput -i acl status

Do not depend on extended ACLs in heterogeneous networks, since non-AIX
systems will ignore them. Only AIX systems will observe extended ACLs over a
network. For reasons of compatibility, we recommend that you discourage use
of the ACL functions except for preplanned uses with major applications.

48 This is partly to avoid security exposures due to improper PATH parameters.

Chapter 4. AIX File Security 55

The chmod Command
There are two methods for setting and controlling permission bits: the chmod
command and the ACL set of commands. The access control list commands are
primarily for working with extended access list functions. The chmod command
is the primary tool for changing base permission bits.

chmod operands can be octal (sometimes called ″absolute″) or symbolic. Octal
notation is common, and this is imbedded in many script programs and shown in
most texts. A symbolic operand can do relative changes such as add (+) and
subtract (-) or clear & set (=). An octal operand simply replaces the total
permissions value.

The use of an octal operand will disable the extended ACL parameters (if any)
associated with the file. If you use extended ACLs, you must use chmod with
symbolic operands when working the files containing the extended ACLs. (An
alternative is to use the ACL editor.) For example you should use chmod a+rw
myfile rather than chmod 644 myfile . This may be an unfamiliar requirement,
and it is very difficult to remember not to use octal notation. It is almost
possible to enforce the use of only symbolic operands. The tcbck command can
locate files with disabled extended ACL′s. See 7.1, “TCB Description” on
page 78 for an introduction to the tcbck command.

4.4 Files That Grow
AIX has some files that grow until the file system is filled or until you (the
administrator) take action. Some of the growth is due to normal AIX operation
and some is due to error situations. The skulker command (shell script,
explained in 9.3, “The skulker Script” on page 92) can be configured to
automatically remove many unneeded files. You must manage the others that
skulker misses or does not inspect.

You may remove the following files whenever you encounter them (unless there
is a particular need for the data, of course):

• Older smit.log files (in various directories) (You might want to keep the more
recent logs. They sometimes help you remember exactly what you did a few
weeks ago.)

• smit.script (in various directories)
• core (in any directory) (Unless you have someone who can read AIX core

dumps!)
• /usr/spool/*/* (if more than a few days old)
• /usr/tmp/* (if more than a few days old)
• / tmp/*/* (if more than a few days old)
• $HOME/mbox (Should be managed by every user in his home directory.

Sometimes a user must be reminded to manage his file if it is using too
much disk space.)

The following administrative files are your (the administrator′s) concern. If they
grow too large, you can edit them or remove them. The system will create a file
again (starting with minimum disk space, of course) when it needs it.

• /var/adm/cron/log
• /var/adm/wtmp
• /var/adm/pacct
• /var/adm/messages
• /var/adm/acct/nite/*

56 Elements of Security: AIX 4.1

• /var/adm/dtmp
• /var/adm/qacct
• /var/adm/acct/sum/*
• /var/adm/acct/f iscal/*
• /var/mai l /*
• /etc/utmp
• /etc/security/failedlogin
• /var/adm/sulog
• /audit/trai l

The INed file manager creates backup files. If you delete files or whole
directories using INed, it will usually make backups in special hidden files before
deleting the files or directory. You can devote a whole session to deleting files
and directories and find you are using more disk space after the deletions than
before. We recommend not using INed for file/directory deletion until you (and
your users) understand its backup operations. These hidden files are usually
placed in the user′s home directory, and their names begin with one, two, three,
or four periods. If you use INed to delete these backup files/directories, it will
sometimes make a ″deeper″ layer of backups; you should manage these files
with the rm command. skulker deletes some of these backups but may not get
all of them. You can erase the contents of a file (and free disk space) without
deleting the file by copying /dev/null to the file.

4.5 AIX Version 4 Error Logging
Security exposures sometimes happen because of errors. AIX has a good error
logging and reporting facility. You should list the error log regularly.

The errpt command is used directly, or with smit as follows:

smit
-Problem Determination
--Error Log
---Generate Error Report

Change / Show Characteristics of Error Log
Clean Error Log

The operating system records selected hardware and software failures in the
system error log. This selection can be modified using the errupdate command.
An error report can be obtained in summary or detailed form. We recommended
that error logging should always be active. It is active as long as errdemon is
running, and this is started automatically when the system is booted.

Using the smit menu:

smit
-System Environment
--Change / Show Characteristics of Operating System

you can limit the size of the error log.

Chapter 4. AIX File Security 57

4.6 Other Comments
AIX and other UNIX systems use symbolic links heavily. The ls -l command
denotes these with an arrow in the name field and an “l” as the first character of
the permissions field. For example:

lrwxrwxrwx 1 root system 5 Jul 22 1993 u -> home

means that u is a symbolic link to home . Note that it appears that everyone has
write permission to u. This is misleading. The permissions in a symbolic link
have no meaning.49 The effective permissions are taken from the target name. In
the above example, anyone working with u must work under the permissions set
by home . (In this example, u and home are directory levels, but the same
concept applies to both directories and files.)

UNIX (including AIX) has no simple way to detect when the target of a symbolic
link has been deleted. Over time, symbolic links with missing targets may
accumulate. These can cause errors that puzzle normal users. No direct
security concerns are caused by this, but you should be aware of the problem.
The most common effect is that a file appears to exist when accessed by one
method, but appears to be missing when accessed a different way.

The environmental parameter ulimit controls the maximum file size that can be
created. This gives some protection against runaway programs. Other
parameters in /etc/security/limits and /etc/security/environ are discussed in
3.4.3, “Disabling the root Userid” on page 26.

AIX has a substantial number of world-writable directories. Most of these have
the sticky bit set. In these cases, the sticky bit provides the only effective
security. Do not remove it!

With AIX, only root can use the chown command to change the owner of a file.
This is more restrictive than some older systems, and may cause a few
complaints. The change was absolutely necessary for effective security.

AIX allows file names up to 255 characters long. Not all UNIX systems permit
long file names, and excessive use of long names can create problems when
interchanging files with other systems.

Many programs create and use work files in the /tmp directory. This is not very
secure since this directory is not protected, and anyone can read these files.
The line TMP=$HOME/tmp in a user′s $HOME/.profile may help. Some
packages and commands use the TMP environmental variable to place
temporary files. (The user should create the subdirectory tmp in his home
directory, of course.)

Note there is an AIX command named test , so users should avoid creating files
named ″test″.

We repeat that AIX does not support suid for shell scripts. That is, the suid bit in
the permissions for a shell script file is ignored. A shell script cannot be run as
root unless it is executed by a user running as root. This is a change from
previous systems and is a general security improvement.

49 This is not completely true. A user must have permission to traverse the symbolic link, and this is provided by search/execute
permission in the symbolic l ink.

58 Elements of Security: AIX 4.1

4.6.1 Unowned Files
Unowned files typically occur when users are removed from the system. When a
user is removed (through smit , for example), all his files (and his home
directory) remain. These files are listed by the system (with the ls or li
commands) with a numeric UID rather than a user name.50 The user may also
have files in other areas; for example, spool files and mailbox files. The find
command can be used to list all files owned by a specific user (before they are
deleted of course).

Using the command find / -user username -print produces a list of all files owned
by username. These files can then be checked, and useful ones allocated to
other users (using chown). The remainder can then be deleted.

To check a system for unowned files, use find / -nouser -print . The listed files
can be checked and reallocated (chown) or deleted as required. Be careful -
some system files will be included in this list, notably /dev/console . DO NOT
delete these!!

If NFS is used for remote file system mounting but NIS (Network Information
Services) is not used, difficulties can arise in identifying file owners. This is
because files that belong to a user on system A, when mounted on system B and
viewed by a user on that system, appear to be unowned unless the user on
system A is also known to system B.51 Again, a file is considered unowned if the
system (using an ls command, for example) displays a number instead of a user
name for the owner.

To prevent the find command from searching file systems mounted through NFS,
the option -fstype jfs can be added. Thus, the find commands above would
become respectively, find / -user username -fstype jfs -print and find / -nouser
-fstype jfs -print .

4.6.2 The /tmp Directory
Many applications place files in the /tmp directory. Some applications fail to
delete these files when they end. Part of the system administrator ′s routine
should be to check /tmp regularly and delete those files that have not been
accessed within the past few days. Fortunately, skulker performs this task on a
daily basis and (unless it is disabled) the care of the /tmp directory can be
largely left to it.

The normal mode for /tmp is that all users can read all files in the directory and
all users can create and write new files, but only the owner of a file can delete it.
This is done by setting ″other″ (or ″world″) access to read and write and turning
on the ″sticky bit″.52 However, some applications may require that the ″sticky bit″
for the directory be removed, thus allowing complete read/write/delete access to
the directory for all users. This should be avoided if possible, but if it cannot,
then all users should be made aware of the potential for damage if files are
stored in the /tmp directory.

50 If you add a new user with the same UID as the deleted user, the new user immediately becomes the owner of the files. This
UID is the number in the /etc/passwd entry. A number will not be reused by smit unless you force it.

51 The owner may be incorrectly identified in some cases if conflicting user numbers exist on separate systems.

52 This use of the sticky bit is not standard across all AIX-type systems. The original use of the sticky bit is with an executable
file; it tells the system to keep the program in storage after it ends.

Chapter 4. AIX File Security 59

Confidential, sensitive, or essential data should never be kept in the /tmp
directory as this directory is readable by all users. This is not easy to manage
since many program packages automatically place work files in /tmp .

If space is required in /tmp , then (provided your applications do not have
essential files there, which they should not) it is safe to delete any files in the
directory to create space. That is, it is safe from an operating system point of
view; you may have unhappy users, but they should not leave useful data in
/tmp .

60 Elements of Security: AIX 4.1

Chapter 5. Network Security

Connecting a computer to a network, whether it is a Local Area Network (LAN)
or Wide Area Network (WAN) opens new categories for consideration when
working with system security. For practical purposes, network security can be
divided into these areas:

• TCP/IP connections. There are two subcategories for this:

− Totally in-house LANs, in which there is no possibility of a connection to
the larger world of TCP/IP (such as an Internet connection).

− LANs which have, in one way or another, a connection to “external”
systems.

• Dial-in ports for ASCII terminals.

• uucp network operations. (In a sense, this is a subset of dial-in connections,
but for practical purposes uucp should be considered separately.)

• All other connections, including SNA.

5.1 Physical Communication Security
Network security involves both physical security and logical security. Other than
the following comments, physical network security will not be discussed in this
document. We must emphasize, however, the fundamental exposures of
physical access to a communications channel. The exposures include:

• Ethernet promiscuous mode. In general, many ethernet (and IEEE 802.3)
adapters provide a method of monitoring all traffic on their LAN. Many
TCP/IP packages provide a separate module to conveniently use this
function. Monitoring can be from any location on the LAN. Anyone with a
small PC, the appropriate software, and a connection to the LAN can monitor
all data traffic on the LAN. The LAN connection might be an established one
(at a connector on an office wall, for example) or an actual “tap” in the LAN
cable.

• Token ring performance and monitoring adapter. This is a standard IBM
product that can display all the traffic on a LAN. It can be used from any
location on the LAN. (In principle, this adapter can be purchased by anyone,
but, in practice, it is not widely available.)

• LAN analyzers. These can display all traffic on a LAN. They can be used
from any location on the LAN.

• “Data scopes” for SNA/SDLC/HDLC lines. In general, these require RS-232
(or similar) interfaces and are used only at modem locations. It is possible
to “tap” a line with a receive-only modem arrangement and use a data
scope for monitoring the line.

• ASCII, start-stop monitoring. Many common PC modems can operate in a
receive-only monitoring mode. This can be used to “tap” a dial-in session
anywhere the baseband telephone signal can be found, such in local
telephone wires, wiring closets, and so forth.

Newer LAN topologies, using various types of switched hubs and “virtual LANs,”
have the potential for much better security using modes in which session traffic
is seen only by the sending and receiving nodes. This technology is quite new

 Copyright IBM Corp. 1994 61

and will not be in common use for several years. It is being driven by
performance factors; the improved security is a side effect.

Wireless LANs, so far, tend to use transmission techniques that are not readily
monitored by anything other than another wireless LAN adapter from the same
vendor. Given this, wireless LANs have the potential for security problems,
although no major problems have been pubicly reported.

While most current LANs are exposed for data monitoring, monitoring on a busy
LAN is not a trivial job. In practice, local programming is needed to filter and
extract useful data. Such programming is not difficult, but it does require a
certain amount of skill and effort and time.

 Exposures

The net effect is that all unencrypted data on almost any network can be read
(“monitored”) by anyone willing to invest the effort and money required.
Some monitoring, such as ethernet on your local LAN, requires very little
effort or money. Encryption is the only general method of protecting
confidential information on a communications network, and general-purpose
encryption solutions are not readily available for most day-to-day situations.

5.2 Network Security Goals
Any approach to network security must be built around reasonable goals. “Our
network systems must be completely secure” is a nice goal, but not a
reasonable one. Practical network security involves managed risks, and should
be approached from this point of view. There are two very distinct security
areas:

 1. Confidentiality of session data, to and from your system, that appears on the
network.

 2. Authentication and access control (for login, file transfer, remote commands)
for your system.

As mentioned earlier, strong confidentiality of session data is difficult (or
impossible) to obtain in network environments. Within a limited and controlled
environment, this risk can usually be tolerated. In larger environments (with
lesser-known users) the risk grows and may not be acceptable. This means that
network topology and segmenting becomes an important security factor.
Smaller LANs, with some degree of isolation between LANs, lower the risks
associated with monitoring. This leads to a demand for firewalls, which are
systems installed to limit the types of traffic between two LANs.

New technology may resolve some of the worst exposures of network security.
DCE, for example, has totally encrypted login sequences and an option for
encrypted session traffic. With today′s DCE, these functions can be used only for
interactions with DCE servers. Within this context, DCE can provide secure and
confidential communication throughout a network. Another new technology,
mentioned previously, provides switching in a LAN hub such that LAN nodes do
not see (and cannot monitor) packets that are not addressed to them.

62 Elements of Security: AIX 4.1

5.3 The securetcpip Command
Some TCP/IP commands provide a relatively secure authentication environment
during their operation. These commands are ftp , rexec , and telnet .

These commands provide security functions only for their own operation. They
do not provide a secure environment for other commands. For example, a user
can telnet to another system (with reasonable authentication security provided
by telnet) and, once logged into the remote system, do something that is
completely insecure.

The securetcpip command disables less-secure “standard” TCP/IP commands.
We recommend that you use the securetcpip command on all systems in your
network unless there is a strong requirement for the commands it disables.
securetcpip is a shell script that disables commands and daemons by editing out
the relevant stanzas in /etc/inetd.conf and using chmod to set the permissions
for the executable commands to 000 (---------). No user can run the commands
once this occurs.

Before running securetcpip , you should quiesce any networking programs that
are running. If the various daemons have been started using SRC (the System
Resource Controller), they can be stopped by:

stopsrc -g tcpip

This command will stop all TCP/IP related daemons. You can then enter:

securetcpip

After running securetcpip , the following commands and daemons will be
disabled and become unavailable for use:

• Daemons
− rshd
− rlogind
− tftpd

• Commands
− rlogin
− rcp
− rsh
− tftp
− trpt

securetcpip disables the use of these commands. It is a reversible change, and
the commands can be re-enabled if required, by uncommenting the stanzas in
/etc/inetd.conf and changing the permissions on the programs and daemons so
that they can once again be executed. To prevent this, you might consider
deleting the relevant commands and daemons. (In practice, few installations do
this.)

The securetcpip command creates /etc/security/config , which contains stanzas
that restrict $HOME/.netrc usage by ftp and rexec .

After doing this, your users must use telnet instead of rlogin or rsh , ftp instead of
tftp and rcp , and rexec instead of rsh . This provides better control of network
security and is a basic step to prevent unauthorized users from accessing your
system.

Chapter 5. Network Security 63

Note : XStations may use tftp to download the X Windows server code from AIX.
You will need to verify that your XStations can operate without tftp before
executing securetcpip . This restriction may also apply if you have diskless
workstations in your network.

5.3.1 Remote Login Controls
Using TCP/IP connections and commands, UNIX users can log into remote
systems. A variety of commands, already mentioned, can be used. If no special
steps are taken, these remote logins follow normal security controls; that is, the
remote user must supply a valid local userid and password.53 It is possible to
trade security (local userid and password required) for convenience (skip the
login process when connecting to another system). The /etc/hosts.equiv,
$HOME/.rhosts , and $HOME/.netrc files are used to control this trade-off.

Should you permit the use of these functions (described below)? This is a
difficult question. The convenience factor can be important. If your users
frequently connect to each others ′ systems (using rlogin , or something similar),
skipping the login sequence each time is very convenient. However, the
potential security exposure in allowing this is large.

We recommend that you permit these functions only if your network is small (all
users known and trusted) and not connected to larger networks. If your network
is connected to much larger networks, we recommend that you run securetcpip
(providing the most protection), or at least prohibit use of the files discussed
here (less protection). If you do not use securetcpip , but do prohibit the
following files, remote users can use rlogin (and associated commands), but
must provide a userid/password for each system. If you use securetcpip , remote
users can still connect to your system, but they must use telnet (or ftp) and
supply a userid/password.

Please note that this complete discussion does not apply to X Windows
connections. Security considerations for X Windows connections is briefly
discussed in 9.2, “X Windows” on page 92.

The /etc/hosts.equiv File
The /etc/hosts.equiv file is used by the rcp , rsh and rlogin commands to bypass
local authentication. Only one such file, with this specific name, may exist in a
system. If a remote host tries to execute one of these commands on the local
system, the local system will check the /etc/hosts.equiv file to see whether that
host is listed in this file.

The file takes the form of a simple list of system names. A typical example
might be:

hosta
hostb
hostc

If the remote host is in this list, no local authentication (login, password) is
required by the remote user if a local account with the same userid exists. The
remote user is automatically logged into the local system as the local user with
the same userid. For example, if “hostb” is listed in the local /etc/hosts.equiv
file, and if user joe has an account on the local system, then a user joe on

53 This userid and password flow, in the clear, over your LAN connections. They have the normal LAN monitoring exposures.

64 Elements of Security: AIX 4.1

system “hostb” can connect and automatically log into the local system as joe
without supplying a local password.

The /etc/host.equiv is not checked if the user is root. That is, root must provide
his password even if an /etc/host.equiv entry exists for the connecting system. If
an /etc/host.equiv entry exists for a connecting system, no check is made for
$HOME/.rhosts files.

The /etc/hosts.lpd file provides a similar service but is limited to those hosts
requesting a remote printing service. If a remote system is defined in
/etc/hosts.equiv , it can issue commands and send printing to the local system. If
the system is defined only in /etc/hosts.lpd , it can only submit print jobs and is
unable to run commands.

You (the administrator) can control these two files because they must be in the
/etc directory, which should be protected.

The .rhosts Files
A $HOME.rhosts file provides a function similar to that of /etc/hosts.equiv , but
more limited in scope. Multiple .rhosts files can exist, in various $HOME
directories. They permit a remote user to log into a local account without local
authentication. The format is:

remote_hostname userid

For example, if user fred has an .rhosts file in his home directory. /u/fred/.rhosts
might contain the following lines:

sysa steve
sysa juliet
sysb clare

The remote users steve and juliet on host sysa and clare on host sysb can log
into the local system as fred. AIX will not use .rhosts files that have permissions
permitting anyone other than the owner to write to the file; such files are simply
ignored. (This limitation would be even better if it also ignored files which others
could read.)

If these files exists on your system, a user defined in one of these files can login
or execute commands without having to provide any form of user authentication.
They can execute commands or login with the same permissions as the local
user whose home directory contains the .rhosts file.

You cannot easily control these files because any user can place them in his
home directory. You can, effectively, disable the use of these files by disabling
rlogin (and his friends) with the securetcpip command.

The .netrc Files
These files (in various users′ home directories) allow processing of rexec and ftp
commands without manual password verification. One of these files can appear
in any user′s home directory. A typical entry might be:

machine tardis login mike password cyberman

This will present the userid mike and the password ″cyberman″ when the local
user attempts to ftp or rexec to the remote host called ″tardis″, thus removing
the need for manual authentication on the remote system.

Chapter 5. Network Security 65

Note that these files control outgoing connections, whereas /etc/hosts.equiv and
$HOME/.rhosts control incoming connections.

A .netrc file contains unencrypted password information, and is a serious
security exposure. You should avoid having .netrc files on your system because
these userids and passwords expose other networked machines. If you must
have these files, it is important that the file has its access permissions set so
that ONLY the owner can read and write to it. (600 or rw-------). Some TCP/IP
functions attempt to enforce this; if the permissions on the file are not set to 600,
an automatic login will fail.

If the securetcpip command was used on your system, it created
/etc/security/config . This file contains stanzas limiting the use of .netrc files.

5.3.2 Other Important TCP/IP Files
These files control system-level TCP/IP functions and are critical elements of
security.

The /etc/hosts File
This file describes the network hosts that the local system identifies by name.
The file matches a name to an IP address. A typical example might be:

 9.12.2.32 gateway
 9.12.2.95 bill
 128.100.1.4 dtp

The /etc/hosts file is used only if a name server is not active, or if the name
server is unable to resolve a name. A name server, or the /etc/hosts file,
permits users to refer to systems by name instead of by their dotted-decimal IP
address. Even if a name server is normally used, the /etc/hosts file should be
secure because it will be used if the name server fails. Only the administrator
should have write access to this file. In general, read access is permitted for
everyone.

You should check /etc/hosts at regular intervals to ensure that names are listed
with the correct IP addresses.

The /etc/inetd.conf File
This file enables and disables TCP/IP services. The inetd daemon starts other
TCP/IP daemons when particular services are required. For example, if a user
uses the telnet command, the inetd daemon starts the telnetd daemon to handle
this request. Services can be withdrawn from the TCP/IP environment by
removing the relevant stanza in this file. This file provides the primary control
point for managing what TCP/IP services are available on a system.

Name Server
If your system is a name server, you must protect the name server data files.
File /etc/resolv.conf should be protected on all systems. Incorrect data could
direct a system to an unauthorized name server. Files /etc/named.boot,
/etc/named.ca, /etc/named.local, and /etc/named.data should be protected.
(Other file names can be used by a name server, but these are the normal
names.)

66 Elements of Security: AIX 4.1

5.3.3 The netstat Command
netstat provides network status information. It is commonly used when
diagnosing network problems. It can also provide information that is useful to
check network security. For example:

netstat -p tcp

provides information about the TCP/IP protocol since booting the system. Look
for things such as failed connection attempts. This may mean someone is trying
to break into your host. There are many options for netstat , and several may be
useful for security purposes.

5.4 Network File System Overview
The Network File System, or NFS, provides a method of accessing files and
directories on other machines on the network and treating them as if they were
local. A directory on a remote machine can be mounted onto the local
filesystem. It then appears to be local to the users. All actions performed on
this mounted directory are automatically passed across the network to the
remote host for processing.

Because NFS uses TCP/IP protocols and not TCP/IP commands to provide its
facilities, most of the precautions we have mentioned so far will have little effect
on an NFS network. For this reason, we must regard NFS security as a separate
topic.

There are two basic components in an NFS network, the server and the clients.
The server exports directories to the clients. The directories that may be
exported and the permissions or restrictions associated with them are listed in
the server′s /etc/exports file.

The client system must mount the exported directory into its local file system
before it can use it. On a client system, issuing the mount command will show
the mounted filesystems. Remote file systems will have an entry in the node
column. On a server system, you can see which hosts have remotely mounted
directories by using the showmount command.

It is important to understand the use of the term “server” in the context of NFS.
Potentially, any system can be an NFS server. For example, a group of
workstations (with a common interest in a project) might all “export” certain
directories to each other. That is, every workstation in the group might “mount”
selected directories on other workstations in the group. In this case, all systems
are both NFS clients and NFS servers.

Stated another way, you may have formally identified NFS servers that probably
have large disks and are used by everyone in the organization. You may also
have informal NFS servers active (perhaps as described in the last paragraph)
that are intended for use within a smaller group. You (the administrator) may
not be aware of some of these more informal NFS activities.

Mounting a remote directory is not necessarily automatic, although placing the
relevant stanzas in /etc/filesystems can solve this. Automatic mounting should
be avoided unless user access is carefully controlled. It is much better to use a
shell script or commands to mount remote directories than to automate them
into the startup routine. This can prevent directories being mounted
unnecessarily and so somewhat reduce security exposures.

Chapter 5. Network Security 67

NFS-exported directories will not protect information if the administrators of the
NFS client systems are not trustworthy. Someone with the ability to create users
and groups on an NFS client system can “see” any file in the NFS-exported
directory. Stated another way, for an NFS environment to have any security
whatsoever, the administrators on all server AND client systems must be
trustworthy. Since workstation owners are usually their own administrators, this
implies that all workstation owners involved must be trustworthy (in the sense of
trustworthy security administrators).

5.4.1 The /etc/exports File
The list of directories that can be exported from a server is maintained in the
/etc/exports file. Each directory must have a separate entry. You (the system
administrator) directly edit this file. A typical entry might be:

/usr/custdata -access=clienta,ro

Which allows the directory /usr/custdata to be exported only to the system
″clienta″. It is exported read-only so that changes cannot be made by the
remote system.

It is important to restrict access to any exported directory. The default, with no
options specified, is to export a directory to all users with read-write
permissions! A variety of controls are available within the /etc/exports file,
including control of root access via NFS.

As an administrator, you have two particular concerns with /etc/exports files:

 1. For your “off ic ial” NFS servers, do the /etc/exports files provide sufficient
protection? Are only needed directories exported? Could lower-level
directories be used instead?

 2. For other hosts, do /etc/exports files exist? If so, they imply that that system
may be functioning as an NFS server. Does this comply with your security
policies?

The directories listed in /etc/exports are not available until the exportfs
command is run. This command is run by the /etc/rc.nfs shell script at startup
time and should be run again for any change to /etc/exports to become active.
When exportfs is run, it interrogates /etc/exports and updates the file /etc/xtab .
This maintains the list of currently exported directories. Do not edit /etc/xtab
directly; use exportfs -a to update /etc/xtab .

Do not export directories that do not need to be exported. Always try to export
the maximum path (that is, the most detailed directory specification) required for
the task.

Always ensure that the permissions that are set for exported directories are as
limited as possible. For example, if you wish to export /usr/lpp/appl1/bin and
/usr/lpp/appl2/bin , you should have two entries in /etc/exports :

/usr/lpp/appl1/bin
/usr/lpp/appl2/bin

You should not have the higher level directory entry:

/usr/lpp

68 Elements of Security: AIX 4.1

5.4.2 NFS Support for ACLs (Access Control Lists)
NFS under AIX supports the AIX filesystem ACL model. There is an RPC layer
program that passes ACL information between the client and server. This may
lead to some unexpected results.

ACL support is an additional function that has been added to the AIX Version
NFS and, as such, it does not change the NFS protocol specification. Other NFS
clients may not support ACLs and cannot see them. This may lead to problems
when the ACL permissions and permission bits differ if the client is a non-AIX
system. Such problems should not arise if the client is also an AIX system.

Do not use ACL functions in heterogeneous networks.

5.4.3 Secure NFS Operations
NFS defines a method for “secure” operation. Properly used, this function
provides secure authentication of NFS users. It does not provide additional data
protection, encryption of LAN traffic, or encryption of data. It does provide
protection against counterfeit host connections (that is, a system that claims
another systems name and/or IP address). In practice, the Secure NFS function
is not often used.

To use Secure NFS, you must install and use NIS. You must change a few of
your normal operational procedures, such as using keylogin instead of login and
yppasswd instead of passwd . You must maintain several files (including
/etc/hosts , /etc/keystore , and /etc/.rootkey in every system) in consistent states.
You should install time daemons in every system. Do not use Secure NFS
without studying it well. Build and use a trial environment before using it in a
larger production environment. The following is a brief overview of the Secure
NFS function. Consult the full AIX documentation for more detail. See Figure 2
on page 71 and Figure 3 on page 72 for an overview of part of the Secure NFS
process.

To mount a directory for Secure NFS, both ends of the connection must be set up
correctly. On the server, the /etc/exports file must have an entry for the
directory to be exported with the secure option set thus:

/usr/secretdata -secure

where /usr/secretdata is the exported directory. Other restrictions on the
directory may also be specified.

The directory should be exported using the exportfs -a command. It is worth
checking that the /etc/xtab file also shows that the directory is to be exported
with the -secure option. If the option is set to -access=secure , the mount will
not work.

On the client there must be an entry in /etc/filesystems for the securely mounted
directory. This entry is of the form:

/usr/secretdata:
dev = /usr/secretdata
nodename = rs6000
vfs = jfs
mount = true
check = true
options = secure

Chapter 5. Network Security 69

Other options, such as ro , can be specified as well. If the secure option is not
specified, DES authentication will not be used, and the directory will be exported
using the standard AIX authentication scheme.

If you wish to use this secure mount, you must configure DES authentication on
your system first.

DES authentication security is based upon the ability to encrypt the current time
which the receiver then compares with the encrypted system time on its
machine. If timed 54 is running and there is a synchronized network time, this is
performed automatically. If not, the client asks the server for its time and then
calculates by how much the client system time differs and does an appropriate
time conversion.

Secure NFS also uses a public key system, with public and secret (private) keys.
The public key system is used to establish initial DES keys for a session. The
public keys are established with the chkey command or by the system
administrator with the newkey command. This prompts for the user′s password
and then generates an encrypted key-pair containing a public key and secret
key.

The client and server must share the same encryption key to begin a
conversation. The client generates a random conversation key, used to encrypt
the timestamp. This is calculated from public and secret keys in such a way that
the the server does not need to know the client′s secret key and vice versa.
Only the client and server can calculate this because doing so requires knowing
one secret key or the other. An outside agent cannot calculate the secret key by
any reasonable means.

The conversation key is encrypted using a public key and sent within a packet
known as a credential . This is the only time a public key is used for encryption.

The credential contains the name of the client, the encrypted conversation key,
and a variable window that is itself encrypted by the conversation key. The
window contains the encrypted timestamp and an encrypted verifier for the
window. This makes it much harder to guess the credential. The server stores
this information into a credential table and replies to the client. In the returned
verifier, the server sends an index ID to the credential table plus the client
timestamp minus one, again encrypted by the conversation key. Because only
the client knows the original timestamp that was sent within the credential, only
the client will know the value of the timestamp minus one. Hence, the client can
verify the server. This occurs whenever service is requested by the client
system.

Note that the encryption key is sent back and forth only at the start of the
conversation. It is not sent on each client transmission. This makes it much
harder to determine the key and “break the code.”

This whole process is only to verify the identity of the client and server. User
data is not encrypted.

54 This is a TCP/IP related daemon that synchronizes the system time across multiple systems.

70 Elements of Security: AIX 4.1

Figure 2. NFS Client Credential

5.4.4 The Client - Server DES Interaction
The Secure NFS service relies on the DES encryption facility which in turn
requires public and private keys. These keys are usually generated for the user
from that user′s login password. To remain synchronized, the password is
updated in a central point in the network maintained by NIS and the yppasswd
command.

5.5 Network Information Service (NIS)
The creation of a single systems image, where every machine has a userid for
every user and the work environment for users is the same regardless of which
machine in the network they are physically connected to, is possible using NIS.
NIS was known as yellow pages or yp, but these terms are not used in current
systems.

NIS shares system information. Without it, having a large number of systems on
a network would create problems for the user. NFS can be used to make a
user ′s files and directories appear on every system. However, since NFS does
not translate user or group IDs between systems, every system would need an
ID for every user. This problem can be solved using NIS.

Chapter 5. Network Security 71

Figure 3. NFS Client-Server DES Interaction

Using NIS, one system is chosen as the network server for files such as
/etc/passwd and /etc/group . This then becomes the NIS server and updates are
made only to these server files. Client systems request this information from the
server.

Using NIS to administer a network can create security exposures, because the
administration files kept on the server are readable from any networked
machine. For this reason, the selection of NIS as a network management tool
should be made with the utmost care and a full understanding of the implications
in such a step. The centralized files also provide intruders a centralized point
for attack.

It is possible to establish and maintain a secure NIS environment, just as it is
possible to establish and maintain a secure UNIX environment. Both require
continuing administrative effort and considerable attention to detail. Security
risks with NIS are perhaps greater because a single failure can expose every
system in the network.

72 Elements of Security: AIX 4.1

5.6 Adapter Security Levels
An earlier version of AIX provided specialized security controls at the LAN
adapter level. This permitted, for example, an administrator to specify that only
top secret, research data might be sent on a specific LAN connection. Part of
these functions were described as data import security and data export security.

These functions are not present in AIX 4.1. They were only partly implemented
in the earlier AIX releases, and were in anticipation of TCP/IP changes that did
not occur. The TCP/IP community has selected other methods for future security
improvements (as part of the planned migration to 16-byte address fields).

Chapter 5. Network Security 73

74 Elements of Security: AIX 4.1

Chapter 6. Logs and Accounting

AIX has the “standard” UNIX accounting subsystem. This is not enabled when
AIX is installed. AIX accounting can be used for several purposes, including:

• Charging users for services

• Monitoring system activity and resource utilization

• Investigating security incidents

There are costs involved in using the accounting system:

• It adds overhead to the system. This can be nontrivial if process and
disk-usage accounting are active.

• Someone (we assume this is you, the administrator) must take time to
understand the accounting system, including its files, cron processes, and
controls. Over time, small problems occur with the accounting files and
someone must monitor and correct these problems.

• Someone should use the output; otherwise there is little point in collecting it.

Charging users for computing resources used was the primary purpose of the
accounting process, and an important activity in the earlier days of UNIX.
Todays trends -- to less expensive, distributed processors -- have generally
negated the need to charge users. The use of UNIX accounting for charging
users (directly or indirectly) is quite rare for workstations, and is often not used
even for larger multiuser servers.

From a security viewpoint, our recommendations are:

• Do not activate the accounting processes solely for security.

• Do become familiar with the usage log files that AIX writes, even when
accounting is not active. (These are described below.)

• For a larger multiuser server, learn how to activate all the accounting
functions (and how to deactivate them). If you suspect intruders in your
system, you can enable accounting for a closer look at system activity. (For
a still closer look, you can use the auditing functions described in a later
chapter.)

The AIX System Management Guide contains a full section dealing with starting
and using the accounting system. Read this thoroughly before activating the
accounting system.

6.1 AIX Log Files
AIX automatically writes several log files, regardless of whether the accounting
system is enabled. These can be very useful for day-to-day security monitoring.
In most cases, simple commands are provided for displaying the files. The key
files and associated commands are:

• /var/adm/wtmp contains an entry for every time a user logs into or out of the
system, plus entries for some system processes. It also contains a record of
system restarts. The accounting process (if active) uses this file, and will
remove data after it has been processed by the accounting programs. If
accounting is not active, this file grows until you shorten it. A simple and
useful command for viewing this data is last . A number of examples are

 Copyright IBM Corp. 1994 75

given below. Do not delete this file. If you want to restart it, copy /dev/null
to it.

• /etc/utmp contains entries about currently active users and subsystems.
When a user leaves the system, he is no longer reflected in this file. The
basic command used with this file is who . Over time, this file may grow due
to accumulated errors, and you may need to restart it. Do not delete it; copy
/dev/null to it instead.

• /var/adm/sulog contains a simple ASCII record for every time the su
command is used. It can be listed with the pg or cat commands, or with any
text editor. In time, you will need to restart or truncate this file.

• /etc/security/failedlogin contains entries for login failures. It can be
displayed with the who command.

• /etc/security/lastlog contains a stanza for every system user. Each user ′s
stanza contains information (time, port, host) for the last successful and
unsuccessful login for this user. This is an ASCII text file. Unfortunately, the
time stamps it contains are very large numbers containing the number of
seconds since January 1, 1970, which are not meaningful to a human reader.
There is no standard program to redisplay the information in a more human
format, but it would not be difficult to write such a program.

The logs described above may not be effective against a user running as root .
These log files will contain the same entries for root as for any other user, but
root can manipulate the files and hide his activities. Hiding all traces of root
activities is not especially simple, but a skilled user can do it. Conversely, a
lesser-skilled person would not know how to do this, and log entries will exist for
his activities.

The /var/adm/wtmp, /etc/utmp, and /etc/security/failedlogin files all have the
same format. It is described in /usr/include/utmp.h . You can write relatively
simple local programs to produce customized reports from these files. The who
and last programs are provided to display these files, with many selection
options. The last command has fewer options, but is useful because it lists
output in reverse order, with most recent entries first. (This is quite useful if you
are displaying a large /var/adm/wtmp file.)

By default, last displays data from /var/adm/wtmp , and who displays data from
/etc/utmp , but either command can be used with the three files in utmp format.

Typical commands might be:

who -a /etc/utmp (current users)
who -a /var/adm/wtmp (complete history)
who -a /etc/security/failedlogin (complete history)

These commands format and display everything in the files. This includes many
lines about system-started processes that may not interest you. The forms:

who -u /var/adm/wtmp
who /var/adm/wtmp

generate less output and may be more useful for browsing the data.

76 Elements of Security: AIX 4.1

Chapter 7. Trusted Computing Base

The first release of AIX 4.1 may not have the trusted computing base
available. The information in this chapter will apply to later releases.

The Trusted Computing Base (TCB) of AIX can be confusing. It is all of the
following:

 1. A concept

 2. Some programs, such as tcbck

 3. Control files

 4. A flag in selected files

 5. A trusted login process

 6. A trusted shell

 7. An installation option

You are not required to do anything with the TCB. AIX runs quite well if you
ignore it. However the TCB, in conjunction with the tcbck command, provides
very useful tools for both security and system integrity. The integrity
consideration may be the most important to you; the TCB facilities can help
detect or prevent accidental system changes and help protect you from playful,
knowledgeable users.

There is an installation option for the TCB. We recommend that you always
install the TCB, on every system, even if you have no immediate plans to use it.
The additional installation time and disk space is trivial, and the TCB cannot be
added after AIX 4.1 is installed.

Based on your organization′s security policy, you (or your management) must
decide how secure your system should be. The TCB facilities can help you
maintain a reasonable level of assurance about system integrity. The TCB
functions do require a modest effort to understand and use, and provision must
be made for this time and effort. You might use the TCB functions only to verify
that the base AIX components are correct. With more effort, you can use them
to monitor and verify that your key applications are intact and secure. In some
cases you might want to use (or make available to many users) the secure login
and secure shell facilities. Your degree of use of TCB functions will determine
the time and effort required to understand them.

One exposure that the TCB functions cannot protect you against is an authorized
(you permitted it to be installed) suid root program that (accidentally or by
design) gives improper access to users. TCB functions can locate unauthorized
suid root programs, but they cannot verify the internal logic of any program.55

55 The AIX audit facilities can be used to trace critical system calls within a program. Audit is discussed in a later chapter.

 Copyright IBM Corp. 1994 77

7.1 TCB Description
A trusted computing base is the set of programs and files that must be correct
(“trusted”) if the rest of the system is to have security and integrity. This
includes programs such as the AIX kernel, the login program(s), the passwd
program, and so forth. Likewise, the /etc/passwd file and other key control files
must be correct. In addition, there should be a method for a user to connect to
the system and assure himself that he is communicating with the proper login
program(s) and not a counterfeit. Likewise, a shell should be available that is
known to be correct and that operates only in a correct environment.

The AIX trusted computing base provides these functions, with tools to ensure
that the TCB remains intact.

Any trusted computing base starts with the assumption that the basic system
delivered by the vendor can be trusted.56 That is, the AIX TCB assumes that IBM
has delivered a system in which the key system components provide proper
security and integrity. You can add any programs or files you choose to the
TCB, and, in production server environments, there are excellent reasons for
doing this. (Not all the components of AIX are in the TCB; only a relatively small
percentage of the programs and files are within the TCB.)

The most useful function of the TCB, from an administrator′s viewpoint, is the
checking process associated with it. It can maintain, in /etc/security/sysck.cfg , a
list of the attributes (permissions, owner, checksum, links, and so forth) of
various files. (The database is not restricted to files in the TCB.) The tcbck
command can then check that the files still have these attributes (and, optionally,
correct them if something changed. This is a fast, complete way to verify that all
the programs/files that form your TCB (plus any other files you include) still have
the proper attributes and are unchanged.

You should examine /etc/security/sysck.cfg (using the pg command) to better
understand the attributes it can record.

AIX defines a TCB bit in inodes. This bit indicates that the file is part of the TCB.
A trusted shell (briefly described later) is part of the TCB and will execute only
programs that are part of the TCB. An inode TCB bit is used to indicate that a
file is part of the TCB and can be executed by the trusted shell (or on a trusted
path). The TCB bit can be set (by root) using the chtcb command. The only
purpose of the TCB bit is to control which programs can be executed from the
trusted shell. There is no point in setting the TCB bit in your applications unless
you need to execute them from the trusted shell.

7.2 Using the tcbck Command
If you install AIX with the TCB option (as we recommend), you should find an
initial /etc/security/sysck.cfg file that matches the installed system. You can
check this with the tcbck -n ALL command. (The command may report minor
problems, which you can correct or ignore. For example, device (such as
/dev/pty) ownership and modes will change as users log in and log out of the
system.) This command reads the /etc/security/sysck.cfg database and verifies

56 This assumption may be based on tests provided by other organizations, on the known history of the product, on assurances
provided by the vendor, and so forth. In any event, the starting point is the vendor-supplied operating system.

78 Elements of Security: AIX 4.1

that every file listed in the database has the same characteristics that are listed
in the database.

It is not practical to regenerate the complete /etc/security/sysck.cfg file. You
can add your programs and files to it, but the initial creation (covering hundreds
of trusted files in AIX) is supplied with AIX. If you plan to use the tcbck function,
you should maintain (and update, if required) the configuration file that is
supplied with AIX.

One option of the tcbck command causes it to “walk the directory tree,”
examining all files in your system.57 It will list any files which should be
considered part of the TCB; these include, in particular, all suid root files.

The tcbck program has options to check the files listed in its database and
automatically correct attributes that do not match the attributes listed in the
database. These are the “p” and “y” options. We strongly recommend that you
not use these options. We recommend that you manually resolve any listed
errors, so you understand what you are changing.

Earlier releases of AIX used the sysck command to perform the functions now
covered by the tcbck command. AIX 4.1 contains a sysck command, but it now
is related only to software installation functions. You (the security administrator)
should have no need to use sysck .

You should run tcbck periodically, simply to verify the integrity of the base
system. You should consider adding your production programs (if they are
relatively stable) to the data base. If you are very concerned about system
integrity, you might copy the database (/etc/security/sysck.cfg) to a diskette or
tape and restore it before use. (This would prevent anyone from altering the
system and then altering the corresponding file attributes in the database.)

Several other “check” commands, described in 3.8, “Verifying the User
Environment” on page 33 are closely related to the tcbck command.

7.3 Using the Trusted Login and Trusted Shell
The login process, for any UNIX system, can be a major security exposure.
Locally attached ASCII terminals and the major graphics terminal of a
workstation are especially exposed. The problem is simple: is the “real” login
program58 controlling the terminal, or is another program simulating the login
program? This can be a surprisingly difficult question to answer.

A user, with only modest programming skills, can write a program that clears
the screen, presents a login prompt, and waits for input. If this program is left
running at a terminal, another unsuspecting user may assume the terminal is
free and attempt to log into the system. The running program then captures the
userid and password and terminates its session. This causes a new login
prompt (from the “real” login program). The user may be surprised by this
second login prompt, but will usually just login again. (A knowledgable, slightly

57 If you use this option, you might consider unmounting CD-ROM and NFS file systems first. You might want to mount private
user file systems so they will be included in the check.

58 Technically, we should also be concerned about the connection to the getty program, but will refer to it as the generic login
program.

Chapter 7. Trusted Computing Base 79

paranoid user will recognize that he has been spoofed and immediately change
his password. However, very few users will recognize the situation.)

This is a classic UNIX attack, and can be effective even on modern UNIX
systems. AIX provides a defense against such attacks with a secure attention
key (SAK) and a trusted path for login. This process is not automatic. The
administrator must enable the SAK process for users and for ports. Users must
follow a slightly different procedure when logging into the system. Even when
enabled, users are not required to use the SAK/trusted path process; they can
continue to login as usual (and with the usual exposure to Trojan horse
programs).

The SAK has two purposes:

 1. If the user is not already logged into the system, it wil l secure the login path
(terminating any login Trojan horses in the process). It will connect the user
to the trusted shell (tsh) if his tpath is defined for it, otherwise it will connect
him to his normal shell.

 2. If the user is already logged into the system, it wil l terminate all programs
that are connected to his port and connect him to the trusted shell, with a
trusted path, if his tpath is defined as on; otherwise it is ignored.

When a user enters a trusted path, the permissions for his port are changed
(automatically, by the SAK-driven process) to 600 (octal) instead of the 622
permissions normally associated with a connected port.

Ports are enabled for SAK by setting the sak_enable = true parameter in
/etc/security/login.cfg . This can be set in the default stanza (making it apply to
all ports), or set in stanzas for each port. Once this is set59, terminals should
respond to SAK, which is CNTL-x CNTL-r (hold down the CNTL key and press x,
then press r). This change must be done by editing the file; it cannot be done
with smit . If the port is the main graphics terminal of a workstation, you must
add two extra lines to /etc/security/login.cfg to enable SAK. These lines are:

/dev/console:
synonym = /dev/lft0

These lines may already in the file, but are commented out.

Users are enabled for trusted path and trusted shell by setting the tpath
parameter in the appropriate stanza in /etc/security/user . This can be done, for
individual users, using smit . It can be set in the default stanza by editing the file.
The parameter can be set to one of the following values:

 1. tpath=nosak . This is the default value and means that the trusted path is not
available for this user. An SAK is ignored if this user is already logged into
the system. An SAK before login will cause the user ′s normal shell to be
started.

 2. t p a t h = o n . This enables optional use of the SAK and trusted path for this
user, and is the value appropriate for the functions discussed in this section.
A SAK after login will cause the trusted shell to be started. A SAK before
login will cause login to start the trusted shell.

 3. tpath=always . This permits the user to log into the system only through a
trusted path (produced with SAK) and restricts the user to the trusted shell

59 We found it necessary to reboot after setting the parameter.

80 Elements of Security: AIX 4.1

ONLY. We recommend not using this value unless you carefully evaluate its
restrictions first.

 4. tpa th=notsh . This value wil l force an immediate logout if the SAK is entered
while the user is logged into the system.

The trusted shell, tsh , will execute only programs that have the TCB bit
associated with their permissions. It will not permit changes to the current
PATH, and has a very restricted set of shell commands and variables. One
command is shell , which terminates the trusted shell and connects the user to
his normal login shell. (The shell internal command is not effective for
tpath=always users.)

The SAK and trusted shell, together, provide a useful function for an
administrator in an inherently insecure environment (such as a university), for an
unusually critical installation or application60, or for a truly paranoid user. The
trusted shell is not useful for “normal” users because its functions are so
limited.

The SAK, by itself, is quite useful for avoiding login Trojan horses. You could
use it like this: Inform the users of the availability of the trusted path login. A
user then has the option to use a trusted path login if he suspects a possible
security problem. The process involved is simple. For example, to login under a
trusted path (protecting the password) and then drop back to a normal
environment, follow the procedure below:

 1. At the login prompt, press CNTL-x CNTL-r (the SAK sequence). A new login
prompt should appear; that is, the screen should “roll up” a new prompt.
This is a signal that the SAK was effective. If this “roll up” does not occur,
the SAK was not effective, and a secure path is not established.61

 2. Log in as usual.
 3. If your normal shell prompt appears, continue as usual.
 4. If the tsh shell prompt appears, enter the command shell . This wil l drop the

trusted shell and reinitialize the user′s session with his normal shell.

If there is any chance that you, or your users, might use the SAK and/or trusted
shell, we recommend that both be enabled. The overhead is slight and, in
certain instances, they can provide an important element of security.

60 This is a very subjective evaluation, of course.

61 The roll up is just your standard herald being redisplayed.

Chapter 7. Trusted Computing Base 81

82 Elements of Security: AIX 4.1

Chapter 8. Auditing Functions

The auditing subsystem provides a means to trace and record security-relevant
information. You can use this information to detect potential and actual
violations of security policy. You (the administrator, operating as root) can
configure and control the audit subsystem. By default, the audit subsystem is
not enabled when you install AIX.

A number of commands, control files, and parameters interact to control
auditing. These can become complex. The following descriptions concentrate
on basic usage and assume you are using the audit control file distributed with
AIX, with only minor changes.

When you start the audit subsystem, it audits (that is, generates an output
record) for events and objects. Two different recording modes can be specified,
BIN and STREAM. Brief definitions of these terms are provided here.

Audit Events
An event is the execution of a specified system module, such as a module that
creates a directory or updates a password. Event detection is distributed
throughout AIX (within trusted modules). A list of all defined AIX audit events is
given in Appendix C, “Audit Events” on page 115. (You can add audit events in
your own programs, and extend this list, but this would be unusual.) A module
that processes an auditable event reports it to the audit logger. The report
includes the name of the event, the success of the event, and event-specific
data. Through various audit controls you can select which of these events you
want to activate and record. You should be as selective as possible when doing
this. Recording all possible events for every user in the system can produce a
huge amount of data and considerably impact system performance.

Event auditing is ALWAYS associated with a userid (or userids). For example,
you can audit every time user joe creates a new directory. If the audit
subsystem is active AND if new-directory events are being audited for joe, an
audit event (record) is created. You can list many userids to be audited, with
many types of audit events for each user, but you cannot readily “audit
everything.”62

There are approximately 130 different audit events built into AIX. These tend to
fall into related groups. For this reason, audit events are grouped into classes.
You can define which events are in a class. The class names are arbitrary. It is
class names (rather than individual audit event names) that are associated with
userids when the audit subsystem is active.

62 There is an undocumented defau l t = ALL line that can be added to the users stanza of /etc/security/audit/config and that will
record all classes for all users who do not have specific event class definitions. Events not included in the defined classes
will not be recorded.

 Copyright IBM Corp. 1994 83

Audit Objects
In addition to events, you can audit objects. In practice, this means files. You
can audit three operations on files: read, write, and execute. Objects are NOT
associated with users. That is, audit records are generated whenever an
audited object is referenced by any user (including root). The mechanism for
object auditing generates pseudo-events, and the process works much like event
auditing.

You can easily add additional files, including your application files, to the list of
audit objects by extending the /etc/security/audit/objects file.

Information Collection
The audit logger (an AIX kernel function) constructs a complete audit record.
This consists of the audit header containing standard information common to all
audit records, and the audit tail containing data for a specific event. The audit
logger appends every audit record to the audit trail. The audit trail can be
written in one (or both) of two modes:

 1. BIN mode causes the audit trail to be written into specified files. It can
alternate between two files, in a somewhat complex manner.

 2. STREAM mode causes the audit trail to be written to an in-memory circular
buffer. A pseudo-device (/dev/audit) is provided to read from this buffer.

Using audit configuration parameters shipped with AIX (in
/etc/security/audit/config), the BIN mode alternates between /audit/bin1 and
/audit/bin2 . When one is full (as defined by the binsize parameter), the audit
subsystem switches to the other BIN file to continue recording, and meanwhile
adds the accumulated data in the first file (using the programs specified in
/etc/security/audit/bincmds) to /audit/trail . After this is done, the first BIN file is
considered empty and is ready for the next switch. When the audit subsystem is
shut down, the data in the active BIN file is added to /audit/trail .63 The BIN
method of output is batch oriented. You must shut down auditing to be certain
that all audit records have been processed and added to /audit/trail .64

The BIN data (which finally is written in /audit/trail) is in an internal, somewhat
compressed form. It must be processed by one of the audit programs (such as
auditpr) to make it human-readable.

The STREAM process simply writes audit records in a circular buffer in memory.
Events are overwritten as the buffer is overwritten. A pseudo-device (/dev/audit)
is provided to read this circular buffer. You can write programs to read from this
device. The default AIX configuration provides a program to do this. It reads the
STREAM buffer and processes each record with the commands found in
/etc/security/audit/streamcmds . These commands (as distributed) format the
output (for human readers) and write it in /audit/stream.out . (This file is NOT
cumulative; it is restarted every time the audit subsystem is restarted.)

The BIN mode offers safe output of the audit trail in a cumulative file. Because
of buffering in the BIN files, you cannot accurately read BIN data in real time.

63 All the file names used can be changed by altering the config file. The file names used here are the ones used in the default
config file.

64 The basic STREAM collection process (in the circular buffer) is more efficient than the BIN process. However, the standard
overall STREAM process (using the setup shipped with AIX) is less efficient than the BIN process, because the backend
processing for BIN is more efficient.

84 Elements of Security: AIX 4.1

The STREAM mode can be read in real time by reading /audit/stream.out , or by
sending output directly to a display or printer.65 You can use both STREAM and
BIN modes at the same time, but this creates more overhead.

Audit Commands
There are five variations of the audit command:

• audit start is used to activate the audit subsystem. This is the only correct
way to start auditing.

• audit shutdown ends the auditing subsystem, processing final BIN records (if
needed) and removing the /audit/auditb file that is used as an “active”
indicator by the audit modules.

• audit off is used to temporarily suspend auditing. Do not use audit off if you
mean audit shutdown .

• audit on resumes auditing after an audit off .

• audit query displays the status of the auditing subsystem. In practice, you
need to use audit query | more because the command typically generates
40-50 lines of output.

If you use these commands in the wrong order, or if the config file is not correct,
the auditing subsystem can become confused. One indication of this is if the
/audit/auditb file exists when you think the auditing subsystem is shut down. If
the subsystem is confused, you can reset everything by deleting all the files in
the /audit directory. (You should save anything useful in /audit/trail and the BIN
files first.)

8.1 Audit Configuration
In AIX 4.1, audit subsystem controls are in the /etc/security/audit directory
(including per-user controls). The /etc/security/audit/config file contains the key
audit controls. It has these stanzas:

• start, which specifies whether BIN or STREAM (or both) should be used when
audit is activated. By default, BIN is used.

• bin and stream contain controls for each mode. The names of the BIN files
are specified here; the defaults are /audit/bin1, /audit/bin2 .

• classes defines several groups (classes) of audit events. Each class is a
group of events that would logically be used together. The defined classes
are: general, objects, SRC, kernel, files, SVIPC, mail, cron, and TCPIP. (You
can define your own classes, using any of the possible audit events listed in
the appendix.) Audit recording is enabled for classes. For example, you
might audit the events defined as general and TCPIP for user root. (The
class objects is a special case. It serves no purpose, and was left over from
an earlier version of the audit subsystem. Do not use this class; you can
delete it if you wish.)

• The users stanza lists specific users (and the audit classes assigned to them)
to which event auditing applies. Data in this stanza is normally maintained
through smit (using the audit parameter in user administration), but you can

65 You can redefine the output file names, append to the output file, or use a totally different method of processing the audit
records, by altering the /etc/security/audit/streamcmds file.

Chapter 8. Auditing Functions 85

edit this file directly. The users stanza should always exist, even if no users
are defined in it. If users are defined, they should have classes defined for
each user. Do not have a user defined, without associated classes. An
example of this stanza is:

users:
root = general
joe = general,files,cron

When auditing is started, it ALWAYS audits the events specified for every userid
defined in the config file AND all the objects defined in
/etc/security/audit/objects . (To make object auditing work correctly, the objects
should also be included in other control files; see the example below for details.)
If you do not want object auditing, you should delete or rename the objects file.
If you do not want event auditing, you should remove all the userids defined in
the config file.

The /etc/security/audit directory contains several other files. The streamcmds
file contains commands that are executed for STREAM audit records. As
distributed, this file contains the command:

/usr/sbin/auditstream | auditpr > /audit/stream.out &

As you can see, this uses the program that reads the STREAM pseudo-device
and pipes each record to the auditpr program. This program converts the record
to human-readable form. The output is redirected to /audit/stream.out . The
ampersand causes this complete command to run in the background. (You can
improve this command slightly by adding a -v flag after the auditpr command, to
increase the amount of information in the output line.)

The bincmds file contains commands that are executed whenever a BIN file fills
(or when the audit subsystem is shut down). In the distributed AIX system, this
file contains:

/usr/sbin/auditcat -p -o $trail $bin

The environmental variables in this command are defined while the audit
subsystem is running. You can change or add commands to either of these
“commands” f i les. The most common addition is the auditselect command,
which can be used to reject (or select) specific audit events, reducing the
amount of audit information collected.66

The objects file lists all the objects to be audited whenever the audit subsystem
is running. If this file exists and contains a list of objects, these are always
audited -- this is independent of whichever userids are being audited. The file
has a stanza for each target file:

/home/joe/good.stuff:
r = ″L_JOE_READ″
w = ″L_JOE_OUCH″

/payroll/input:
w = ″PAYROLL_WRITE″

You create appropriate event names, such as “L_JOE_READ.” These event
names are referenced in other files, as shown in “Basic Object Auditing” below.

66 You should be as selective as possible when deciding on users, events, and objects for auditing. The auditselect command
can reduce the amount of final audit output, but this is an “after the fact” filter that does not remove the overhead of collecting
the audit information.

86 Elements of Security: AIX 4.1

8.2 Basic Audit Usage
There are may ways to use the auditing subsystem. This section describes
simple uses and can serve as a starting point for becoming familiar with
auditing.

Basic BIN Auditing
Use smit to add audit classes for one or two users. You can use root as one of
the users for these exercises.

smit
Security and Users
Users
Change / Show Characteristics of a User

*User NAME [joe]

AUDIT classes [general,files]

Display /etc/security/audit/config ; you should see a user stanza for the userids
you modified. Verify that the first stanzas in this file contain:

start:
binmode = on
streammode = off

bin:
trail = /audit/trail
bin1 = /audit/bin1
bin2 = /audit/bin2
binsize = 10240
cmds = /etc/security/audit/bincmds

If you do not find these parameters, someone has altered your audit
configuration and the following instructions may not work. (The following
instructions assume you are root.)

Issue the command audit start . There is no response (meaning the command
ended with code 0); you will simply receive the next prompt. Issue the command
audit query | more . You should have a message that “auditing is on” and the
PID number of the BIN process. You will also have listed all the defined events
and objects.

Exercise the system, using the userid(s) you defined for auditing. Log into the
system with this userid; do not su to it.67 (If you are using a single-user
workstation, it may be more convenient to audit root, since you must be logged
in as root to issue the audit commands.) List files. List /etc/security/passwd ,
which is one of the default files for object auditing. Try the su command (which
causes one of the audit events listed in the general class).

Finally issue audit shutdown . Inspect the /audit directory. It should contain a
bin1, bin2, and trail file. Use the command auditpr -v < /audit/trail | more to
look at the audit trail. (If you used the su command, notice that the audit records
contain your login userid, not the temporary su userid.)

67 You can su to another user, but you need to understand the audit environment. Audit will always report your original login
userid (and not the su target userid). However, it will audit only the events specified for the su target userid.

Chapter 8. Auditing Functions 87

Basic STREAM Auditing
Change /etc/security/audit/config to enable STREAM mode.

start:
binmode = on (you can turn this off, if preferred)
streammode = on

bin:
trail = /audit/trail
bin1 = /audit/bin1
bin2 = /audit/bin2
binsize = 10240
cmds = /etc/security/audit/bincmds

stream:
cmds = /etc/security/audit/streamcmds

Start the auditing subsystem again, with audit start . (Do not use audit on ; this is
used only after you have temporarily suspended auditing. If you attempt to start
the auditing subsystem with audit on , it will confuse the system.) Display the
/audit directory. The /audit/stream.out file should be growing as you use the
system. Display data with pg /audit/stream.out . The STREAM file is in
human-readable form, and can be listed with any editor or display program.
Remember that, by default, the /audit/stream.out file is rewritten each time you
start the auditing subsystem.

Basic Object Auditing
The above examples included object auditing of the objects defined in the default
/etc/security/audit/objects file. We will expand this file in this example.
Substitute your own file names for the ones shown here:

 1. Edit /etc/security/audit/objects , and add several stanzas such as:

/home/joe/good.stuff:
r = ″L_JOE_READ″
w = ″L_JOE_OUCH″

/payroll/input:
w = ″PAYROLL_WRITE″

(Remember to include the colons after the file names.) Create any event
names you wish, but select names that will not conflict with others in this file
or the events file.

 2. Edit /etc/security/audit/events , and add several l ines at the end of the file,
after the other “object events” already defined there:

L_JOE_READ = printf ″%s″
L_JOE_OUCH = printf ″%s″
PAYROLL_WRITE = printf ″%s″

These lines are for the auditpr program, to help it format output.

 3. (There is no need to add anything to the objects line in the classes stanza of
/etc/security/audit/config . This classes line is not referenced by any audit
function.)

Issue audit start using BIN or STREAM, as you prefer. (If you prefer STREAM
mode, we suggest adding the -v flag to the auditpr command in streamcmds
before starting auditing. This will cause the STREAM output to include more
information.) Access the files you are auditing (such as /home/joe/good.stuff
and /payroll/input in the examples). Inspect the STREAM output (or audit
shutdown and inspect /audit/trail if you are using BIN mode) to verify that
references to the objects were audited.

88 Elements of Security: AIX 4.1

Minor Comments
The list of audit classes associated with a user is set when the user logs into the
system (or is the target of an su) command. Changes to the audit classes of a
user are not effective while he is logged into the system.

The audit query command may list more events types than you are currently
using. Do not worry about it. (It lists all event types that have been used since
the system was last booted.)

The audit processes will trace thread ids, which will be recorded in the header of
all audit records. These are not printed by the auditpr command unless you
specify that it be printed. (The auditpr and auditselect commands can include
complex operands for selecting and formatting specific fields of audit records.)

The audit records produced by AIX 4.1 are not compatible with the records
produced by earlier AIX systems. A conversion program is provided if you need
to process older audit records with AIX 4.1.

Do not audit NFS or DFS files. The auditing subsystem provided with AIX 4.1 is
not suitable for auditing distributed file systems. ;i1.audit userid

Audit always reports the login userid; this is not changed if the user switches to
another UID with the su command. However, the selection of events to audit is
controlled by the current (effective) userid (which can be changed with su).

8.3 Recommendations for Auditing
We do not recommend running the auditing function during your normal
operations. The overhead can be substantial (depending on the events
selected), and handling the output requires timely efforts. We do recommend
that every system administrator learn how to use the auditing subsystem to
accomplish basic functions. In particular, you should know how to start, stop,
and display basic audit information. You should practice these steps until you
can perform them without fumbling. You will need these functions if you suspect
your system is being attacked.

You can add file names to the list of audit objects. You might decide on a set of
critical production files and add these to the audit objects list. This causes no
overhead unless you start the audit subsystem. Preparing a relevant objects list
is best done before a critical situation arises.

An exception to these recommendations might be a critical server. You might
want to define a minimal set of audit events and objects, and always run with
audit active. In this situation, you are more likely to audit objects than
users/events.

8.3.1 Audit Limitations
The limitations of the audit system should be understood before you consider
building a major system monitoring function based on it. “Production” use of
audit implies using the BIN mode. The BIN output files are world writable. The
directory owning the BIN files is not accessible by others, but can be
read/searched by the system group. A clever user (in the system group) could

Chapter 8. Auditing Functions 89

introduce (or remove) audit events.68 The BIN files are readable by anyone in
the system group; this could have confidentiality implications.

Many audit events are defined (see Appendix C, “Audit Events” on page 115),
but the “higher level” events depend on “higher level” programs to generate the
events. For example, the mkuser command generates an audit event. However,
it is possible to create a new user without using the mkuser command.

Many servers use database products (such as DB2) or on-line transaction
processing monitors (such as CICS). These products do not interact well with
the audit subsystem. For example, database monitors open their files, and all
file access is through the database monitor. The audit subsystem is unaware of
which user is requesting which data from the database monitor. The audit
subsystem only sees the database monitor accessing its files.

These comments are not meant to degrade or discourage use of the audit
system. It can be very effective, especially in commercial environments where
root and system access is tightly controlled. Two styles of usage might be
considered in this environment:

 1. Monitor specific events and objects, and write a local program (or shell
script) to routinely report usage.

 2. Record many events and object accesses for use “after the fact” in
investigating problems. This implies accumulating and managing significant
amounts of data and will require some planning and effort to manage this
data.

8.3.2 Auditing Products
We know of only one sophisticated product designed to use AIX audit data. This
is Stalker for AIX/6000, from Haystack Labs, Inc, in Austin, Texas.69 This product
will accept audit data (from multiple AIX systems) and permit a central
administrator to browse it, with many selection criteria. The unique function of
Stalker is a misuse detector. This is a program that works with a large database
(furnished by Haystack) of misuse signatures (series of audit events) that are
characteristic of specific attacks or problems in the system. Detected problems
(or potential problems) are reported to the administrator.

Stalker can work with a variable set of audited events and objects. The more
events/objects audited, the more useful the program. The downside is that more
audit recording produces more system overhead.

68 Of course, the system group should contain only trusted administrators. The number and nature of users in this group is one
factor in determining the extent of reliance on audit output. The “world writable” permissions of the BIN fi les may change in
future releases of AIX.

69 The telephone number is (512)-918-3555.

90 Elements of Security: AIX 4.1

Chapter 9. Other Topics

This chapter briefly discusses several topics related to AIX system security that
are not covered elsewhere in this document.

9.1 Firewalls
A “firewall” is a system that protects your network from unwanted interactions
with an external network. The most typical use is to connect your network with
the Internet. A firewall can be a function on a shared system, but it usually is a
small, separate, dedicated system. Software to create a firewall is available
from several sources, including “free” anonymous FTP servers. The most
common approach is to create a “wrapper” that intercepts programs run through
inetd .

At the time this was written, IBM was beta testing (in a number of customers ′
installations) a product named IBM NetSP / Secure Network Gateway for AIX
6000. This is a firewall-type product. The version being tested is only for AIX
3.2.5, and (at the time this was written) had not been tested with AIX 4.1. The
requirements for the program are an AIX system with two (or more) LAN
adapters (token ring, ethernet, SLIP), 32MB memory, 800MB disk, and a graphics
console.

This product provides rewritten TCP/IP functional modules instead of using the
“wrapper” approach.70 The initial product provides gateways for telnet and ftp ;
gateways for other services (such as gopher and mosaic) may be added later.
Users in the protected network log into the Firegate system to use the gateways.

The product also supports the SOCKS protocol. This is a (new) standard
protocol for clients in a protected network to access servers in an unprotected
network. It requires rewritten client software, such as new telent and ftp
modules (and several are included with the product). A “socksified” client uses
the protected gate automatically; the user appears to connect directly to the
external server. In other words, the use of a firewall-type system becomes
transparent. Over time, most TCP/IP packages will provide and support
“socksified” functions.

Administration is through a graphical interface. The administrator has a fine
level of control over users and functions that may pass through the gateways.

If your organization′s production networks are connected to the external world
(usually meaning the Internet), you should strongly consider installing a
firewall-type interface. The number and variety of system attacks over the
Internet cannot be ignored.

70 This is a more secure and better architected design.

 Copyright IBM Corp. 1994 91

9.2 X Windows
A full discussion of security for X Windows is a complex topic and beyond the
scope of this document. The following material may help with initial security
planning.

The terminology for X Windows must be understood. A server is the unit with
the display; it is a display server. A client is the system with the computational
program that is sending output to (or reading input from) the server.

Basic security begins with the display server. It can control which client systems
may use the display server. There are two methods for doing this:

 1. The xhost command may be used to add or delete systems from the list of
permitted client systems. This command, in effect, makes a temporary list
(which does not survive rebooting).

 2. You can create files named /etc/X n.hosts , where n is 0, 1, 2, ... (the number
of the logical display) containing lists of the client systems permitted to
connect to this display server.

You can look for, and control, /etc/X?.hosts files on your system. Unfortunately,
you cannot readily find user scripts with xhost commands authorizing large
numbers of client systems connections with an X Windows server on your
system. Some users make shell scripts containing xhost commands for every
client they might ever want to use, and this is certainly an exposure.

A fundamental problem with X Windows security is that, once a server permits a
client system to connect to it, any program running in that client can access
(and, to a large extent control) the display server. Newer protocols and the new
XDM control processes address aspects of this problem, but these controls are
not generally understood or used. Fortunately, the general exposures of X
Windows usually apply to workstations (with graphics terminals) instead of
servers (which, by some definitions, do not have graphics terminals).

Part of the customization for XDM (and, potentially for other elements of X
Windows) on display servers permits the specification of files that will be
automatically executed as root when the server is started or stopped. This is a
potential security exposure. The standard directories for customizing X Windows
are normally protected, but it is possible to override many parameters.

XDM (a new X Windows manager in AIX 4.1) cannot readily be stopped once it is
started, and it might be automatically started (if you select to do so). This could
be considered a security “extra,” because it prevents basic line-mode access to
the terminals it controls. This aspect might be relevant for workstations in some
exposed environments.

9.3 The skulker Script
AIX is delivered with the file /usr/sbin/skulker , commonly known as skulker . This
is a shell script that deletes a variety of (presumably) unwanted files. It is a
moderately complex shell script; parts are easy to read and parts are rather
difficult. As delivered, it is suitable for local file systems. According to the
comments, you may need to edit it and set NATIVE=/nat ive/ if used with
distributed systems.

92 Elements of Security: AIX 4.1

You can execute skulker from the command line (if you are root), or you can
execute it from cron , which is considered the “normal” use. It is not
automatically executed by cron in the base AIX system. There is a line in
/var/spool/cron/crontabs/root for it, but the line is a comment. You can edit this
file and uncomment the line if you want to have cron run skulker every night.

The following files are deleted by skulker :

• spooled output files older than four days

• files left in the mail queue more than two days

• ordinary files in /tmp that are more than one day old

• ordinary files in /var/tmp that are more than one day old

• *.bak, .*.bak, a.out, core, proof, galley, ...*, and ed.hup files (with a few
restrictions) that are more than one day old

• .putdir directories more than one day old

You may change skulker as you wish, but be careful with it. It is executed with
root authority, and any changes should be well tested.

9.4 Controlling cron and at
You should read the AIX documentation for the crontab command before using
cron functions. While it is possible to edit some cron files directly, the crontab
command provides the normal method of adding, changing, and deleting cron
jobs. The AIX cron system (through the crontab command) builds separate files
for jobs from different users, and has removed the many root exposures that
were well known on older UNIX systems.

You should consider whether any of your normal users should be permitted to
submit cron or at jobs. On earlier systems, there was a common need for these
functions because there was not sufficient processor power to perform many
jobs on-line (in the “foreground”). This has changed on more modern systems.
Today, the most common use of these functions is to run regularly scheduled
production jobs. You may not want your normal users introducing any cron or at
jobs.

There are two ways to control the use of these functions. You can prohibit
specified users from using these functions, or you can limit usage to a list of
specified users. This involves four files:

/var/adm/cron/cron.allow
/var/adm/cron/cron.deny
/var/adm/cron/at.allow
/var/adm/cron/at.deny

The two “deny” files exist in the distributed system, but are empty. The two
“allow” files do not exist in the distributed system. If they exist, the “allow” files
take precedence, and the “deny” files are ignored. If an “allow” file exists, only
the users listed (by userid) in the file are permitted to use the function. This
applies even to root; that is, root must be listed in an “allow” file in order to use
the associated function.

Especially for larger servers, we suggest you create /var/adm/cron/cron.allow
and /var/adm/cron/at.allow files containing the name root and the names of

Chapter 9. Other Topics 93

whoever is expected to establish scheduled production jobs. The files contain
the simple userids, one per line.

The cronadm command is useful for inspecting current cron and at information:

cronadm cron -l (list all cron files)
cronadm cron -l joe (list joe′ s cron files)
cronadm cron -v (list job submission status)
cronadm at -l (list existing at jobs)
cronadm at -l joe (list joe′ s at jobs)
cronadm at -v (list submission status)

The command can also be used to remove jobs from these queues. If a cron (or
at) job does not exist for a specified user, you will receive an AIX message about
“file or directory not found.”

94 Elements of Security: AIX 4.1

Chapter 10. Checklists and Reviews

The following lists may be useful for initial installation, routine operation, or a
review of AIX security. No lists such as these can be complete, or can be simple
cookbooks. Understanding and perseverance is needed for these activities;
checklists are just an additional tool.

10.1 Planning
As delivered, AIX is a totally “open system.” It has no effective security, but
provides the tools for the administrator to create a secure system. It is up to the
administrator to establish initial security and maintain security through routine
administrative actions.

You should obtain or produce a formal security policy (no matter how simple it
may seem). This provides a target for your security implementation. Sometimes,
in the midst of too many details, the target becomes confused -- especially if
many people are involved.

You should, at least initially, consider separately the security aspects of:

 1. Your base AIX systems,

 2. Your network environment, and

 3. Your NFS (and NIS, if used) environment.

Attempting to consider all these at the same time can be confusing. Different
goals and different risk factors/assessments apply to these different areas.

10.1.1 Initial Installation
• Install the TCB. (This may be an installation option on some versions of AIX

4.1).

• Set a password for root as soon as your system is usable.

• Set the following password restrictions in the default stanza of
/etc/security/user .

pw_restrictions:
maxage = 12 (force change after 12 weeks)
maxrepeat = 3 (max three repeated characters)
minalpha = 1 (at least 1 alpha character)
mindiff = 3 (at least 3 different from last time)
minother = 1 (at least 1 nonalpha character)
maxexpired = 4 (allow logon 4 weeks after expired)
histexpire = 26 (prohibit reuse for 26 weeks)
histsize = 8 (prohibit reusing last 8 passwords)
pwdwarntime = 14 (start warning 14 days before expire)

• Define a timeout value. Place it in /etc/profile if it is the same value for all
users.

TMOUT=1800 (for Korn shell)
TIMEOUT=1800 (for Borne shell)
export TIMEOUT TMOUT

The timeout value is expressed in seconds. For example, the value 1800
means the shell should timeout (exit) if there is no activity for 30 minutes.

 Copyright IBM Corp. 1994 95

Set both TMOUT and TIMEOUT if your users might use either shell. See
3.7.1, “Additional Authentication Methods” on page 33 for more information.

• Update the shell prompt, as discussed in 3.4.2, “Prompts” on page 26, if
appropriate. This is not a direct security issue, but a shell prompt that
indicates the current directory helps prevent errors by new and old users
alike. /etc/security/.profile is a good place for it.

• Redirect output of skulker and similar reports to a single file, for example,
/tmp/dailyreport - this makes it easier to monitor system activities and status
daily.

• The securetcpip command disables various daemon services. Use this
command (once) if rlogin and related commands are not required.

• In the /var/adm/cron directory, use cron.allow , cron.deny , at.allow , and
at.deny files to control access to these functions. See 9.4, “Controlling cron
and at” on page 93.

• Change the login herald to identify your system. You may want to make a
distinctive display, making your system herald easily recognizable. See
login.cfg in 3.7, “Files Associated With User Accounts” on page 30.

• Learn how to change the message of the day.

• Run tcbck to establish a base; print the configuration file. Review and fix
any reported problems now. See 7.2, “Using the tcbck Command” on
page 78.

• Assign different root passwords to different machines. The administrator
should ensure that distinct root passwords are assigned to different
machines. You may allow normal users to have the same passwords on
different machines, but never do this for root.

• Have emergency procedures. In the event the administrator cannot be
reached during an emergency, an authorized person should have access to
the necessary password. Use of this procedure should be logged and the
password changed immediately after use. This is simply good business
sense.

• Consider disabling all remote and dial-in terminals at the end of the day.
Enable them in the morning. This can be done with the controls in
/etc/security/login.cfg .

• Are other port controls needed? Should certain users be restricted to (or
from) certain ports?

• Carefully review all the parameters in the default stanza of
/etc/security/user . Set appropriate defaults before you create users, so you
will not need to specify many parameters for each new user.

• Consider disabling login capability for root on any system where more than
one person knows the root password. This forces users to login under their
own userid and then su to root. Accounting and/or /var/adm/sulog will have
a record of these users. (Of course, a root user can alter these records, but
this implies intended improper activities.)

• Edit mkuser.default , as discussed in 3.3, “Users” on page 16.

• Consider enabling SAK for all terminals, and allowing all users to use the
trusted shell (if they want to use it). See Chapter 7, “Trusted Computing
Base” on page 77.

96 Elements of Security: AIX 4.1

10.1.2 Continuing Activities
• The root password should be changed on an unannounced schedule by the

system administrator. If multiple people need to know the password (for a
large server with 24-hour operation, for example), be certain the new
password is communicated in a reliable way.

• Take backups. Keeps records. Be certain someone else knows how to
locate the most recent backup and recover files from it. This requirement
applies to servers and workstations.

• Beware of shell archive files (shar files). These are a common way to
distribute “freeware” or “shareware” or to obtain fi les from anonymous ftp
servers. Never execute a shar file while operating as root unless you have
examined the whole file and trust it. This can be difficult. A user (or even
your management) may approach you with a wonderful program that is
needed immediately. It was obtained from “somewhere” (not a very trusted
source) by various file transfers (not a trusted channel) and needs to be
installed71 by root. This situation must be handled with considerable care
and tact.

• A new user, created via smit , is not able to use the system until his
password is created (with smit or with the passwd command). You can
create new users before they are needed and delay creating their passwords
until the users require access to the system. A new user is required (by AIX)
to change his password the first time he logs into the system. If you (the
administrator) assign “standard” passwords when a new user is created,
you have an exposure. After the new account is created, anyone could be
the first logged in user and thus set a new password. You should create
unique and obscure initial passwords for new users, OR require the new
user to log in immediately after you create his initial password. (When he
logs into the system, he will be asked to change the password.)

When adding a new user:

 1. Be certain the user understands how to make an acceptable password,
and changes his initial password. Even unshared systems should have
good passwords.

 2. Explain your policy about unattended terminals and timeout operation.
 3. Give a written copy of your organization ′s security policy to the new

user.
 4. Ask the new user to login. The system will ask him to change his

password. Be certain he does this.
 5. Be certain the user knows where (in /u/userid) to keep his files - and

where not to keep his good files (such as in /tmp).
 6. Instruct him in the dangers of revealing (or “ loaning”) his password to

anyone.

• Do not allow users to share a userid (by sharing the password) or a UID (by
equating several accounts to the same UID). There are exceptions to this,
but these must be carefully considered.

• When assisting a user, do not su to root from his session. If you do this, you
are using his environment (with his PATH) and this opens a large number of
exposures. If you must do this, then use full path names for all commands
you use while executing as root.

71 A shar fi le is “installed” by executing it.

Chapter 10. Checklists and Reviews 97

• Beware of a user who changes IFS (input field separator) in his profile. Do
not allow it to be changed in /etc/profile . A knowledgeable user can play
many clever terminal tricks with IFS and cause endless trouble.

• Do not place the current directory in the PATH for root. Do not allow it to be
specified this way in /etc/profile . The default PATH for AIX, which also
applies to root, has the current directory as the last element in the PATH.
You must create a .profile for root to override the default PATH in the default
profile (in /etc/profile). Typically, root ′s home directory is /, although you
can assign another home directory. A .profile is in a user′s home directory.

• A umask value should be set for users. With AIX 4.1, a umask can be
specified as part of the smit panel for adding or changing a user. The
normal umask value is 022, although 027 (disables any “world” access) may
be better in some cases. Specific umask values may be placed in individual
$HOME/.profile files. (Remember that a user can change his own umask
value at any time. The administrator cannot easily prevent this, although it
can be made slightly more difficult by placing alias statements in the user′s
.profile)

• Always ensure that the permissions that are set for exported NFS directories
are as limited as possible. For example, if you wish to export
/usr/lpp/appl1/bin and /usr/lpp/appl2/bin , you should have two entries in
/etc/exports :

/usr/lpp/appl1/bin
/usr/lpp/appl2/bin

You should not have the higher level directory entry:

/usr/lpp

Do not export ″high-level″ directories unless absolutely necessary. For
example, do not export /u if all you really need to export is /u/johnj/dbdir .

• Never routinely operate as root. Login to your normal userid and use the su
command to become root only for necessary steps.

• If you have activated any auditing functions you should check their output at
least daily, looking for unusual events. Unusual events may include activity
at odd hours, repeated login failures, repeated failures with the su command,
and so forth. Possibly delete the audit output when finished; it tends to grow
rapidly.

• Consider adding tcbck to cron . (This might be done a little later, after your
system is operational). See 7.1, “TCB Description” on page 78.

• Use tcbck daily or at least weekly. See 7.2, “Using the tcbck Command” on
page 78.

• Update the tcbck profile when important files (from a security viewpoint) or
suid programs are added to the system. See 7.2, “Using the tcbck
Command” on page 78.

• If you use the accounting system, inspect the output on a fixed schedule.

• Inspect /tmp/dailyreport daily, if it exists.

• Run errpt at reasonable intervals. See 4.5, “AIX Version 4 Error Logging” on
page 57.

• Display /var/adm/sulog and look for unusual patterns. Delete it when it
becomes too large to easily scan, or delete it every time you inspect it.

98 Elements of Security: AIX 4.1

• Check at and cron jobs, especially after someone leaves the organization.
This can be done (by root) with cronadm at -l userid and cronadm cron
-luserid.

10.2 Reviewing a System
The following considerations and tests may be useful for reviewing the security
environment of an AIX system.

• Are groups used effectively?

• Is there a written security policy (no matter how simple it may be)?

• Who takes backups? This question is much more significant for servers than
for workstations, but it is important for both. Do several people know where
backup records are kept? Can several people find the most recent backup
and restore files from it?

• Note that a user account can be disabled in several ways:

 1. The password field in /etc/passwd can contain an asterisk.
 2. The password field in /etc/security/passwd can contain an asterisk.
 3. The expires field in /etc/security/user can contain an expired date. The

date 0101000070 (JAN 1 1970) is normally used for this purpose.

AIX tends to use a mixture of the second and third methods. When verifying
that an account is disabled, you should check in this order.

• All active user accounts should require passwords. Any account without a
password should be deactivated. Use the command pg /etc/passwd , and
verify that the second field of each line is not null. (You can do the following
check at the same time.) (The usrck command performs this same check,
but you should scan /etc/passwd at least once anyway.)

• The /etc/passwd file should not contain any passwords. You can list the file
(with the pg /etc/passwd. command) and scan for encrypted passwords
(which would be the second field in each line). The second field should
contain an exclamation point, indicating that the encrypted password is
stored in /etc/security/passwd .

• Is the root password documented, for emergency use?

• Do administrators have a login and a password different from that of root?

• Display /var/adm/sulog and look for unusual patterns.

• Run pwdck -n ALL . This command looks for irregular contents in
/etc/passwd , /etc/security/passwd , and /etc/security/name files. Problems
are listed on the screen (which you can redirect to a file). There is an option
to automatically “fix” any problems found. We suggest you do not use this
option except under unusual circumstances. If you manually fix problems,
you will be more aware of their origin and other side effects not reported by
the “ck” commands.

• Run grpck -n ALL . This command is similar to the grpck command. It
checks relationships between the /etc/group, /etc/passwd,
/etc/security/passwd, /etc/passwd.pag, , and /etc/passwd.dir files. (The last
two files listed are for a small database to allow AIX to resolve UIDs and
GIDs quickly.)

• Run usrck -n ALL . This command is similar to the pwdck command. It
checks relationships between the /etc/passwd , /etc/security/user ,

Chapter 10. Checklists and Reviews 99

/etc/security/limits , /etc/security/passwd , and /etc/group files. You may
receive messages that several system-owned accounts have expired. You
can ignore these messages.

• Are TMOUT and/or TIMEOUT environmental variables set? Use the set or
env command to display current environmental variables for the account you
are using. These variables are often set in /etc/profile , and you can pg
/etc/profile to check this.

• Is root enabled for login? Is it intended to be enabled for login? Use smit to
display the characteristics of root.

• Log into the system as root (or su - if login is not permitted). Use the env
command to display the PATH variable. Is the current directory in this
PATH? If so, is it at the end of the PATH? (It is best if the current directory
is not in root ′s PATH. If it is in the PATH, it should be listed after the system
directories.)

• The default permissions for a $HOME directory (when smit is used to create
a new user) are 755. This allows anyone to display the user ′s $HOME
directory; this may, or may not, be appropriate for your installation. Use the
command ls -l /home to display the permissions for all users′ $HOME
directories (assuming you are using the normal AIX directory structure).

HOME directory permissions 710 prevents anyone except the owner of the
directory from writing in it. It also prevents groups and others from visiting a
user ′s HOME directory, searching for files with insecure permissions or
interesting information.

A permission mode of 711 on a user′s HOME directory allows others to
traverse to lower directories within the HOME directory which have more
open permissions, but not to display the contents of the base $HOME
directory. Files that require access by others should be placed in lower
directories.

• Initialization files, such as $HOME/.profile , should not be writable by anyone
other than the owner. The permission modes for these files should be 640 or
600. If writable by others, they could be modified in a way to compromise all
files to which the user has write access, or the user′s PATH could be
changed. This is a critical check. Try the command:

find /home -name .profile -exec ls -l {} \;

• The default permission mode (a user′s umask) should be set to 022 or 027.
The default umask can be found in /etc/security/user , and can be set through
smit . Is a default umask value set for the current user? Enter the umask
without operands.

• The user′s path should be reviewed to ensure that system directories are
checked before local directories. Using a “normal” userid (not root) issue
an env command and examine the displayed PATH. Issue an ls -a while in
this userid′s home directory. Determine if there is a .profile containing a
PATH that overrides the default path.

• While logged in as root, issue the command lsuser userid where userid is
any defined userid that appears interesting. This command will display
almost all the security-relevant administrative settings for that user. You can
use the command lsuser -f ALL >> /tmp/ulist to obtain the same listing for
all defined users, directing the output to a temporary file (because it will be
too large to display directly). You can print this file and take it away for desk
checking.

100 Elements of Security: AIX 4.1

• /etc/hosts.equiv , .rhosts , .netrc - Are these files permitted by your security
policy? To check for these files, use:

find /home -name .rhosts -print
find /home -name .netrc -print
pg /etc/hosts.equiv

• /etc/hosts - Check to ensure that no new host systems have been added and
that the IP addresses are correct.

• /etc/inetd.conf - This file defines which TCP/IP services are enabled. Check
to see that unwanted services have not been enabled on your system. A line
connecting a program to an obscure port address could provide a path into
your system for a root user. List the file with pg /etc/inetd.conf .

• netstat provides network status information. It is commonly used when
diagnosing network problems. It can also provide information that is useful
to check network security. For example:

netstat -p tcp

provides information about the TCP/IP protocol since booting the system.
Look for things such as failed connection attempts. This may mean someone
is trying to break into your host.

• If the securetcpip command was used (during installation, for example),
verify that the unwanted commands have not been reenabled. For example,
the command ls -l /usr/bin/rlogin should show --------- for the permissions
field.

• Review hidden files. Some users think they can hide various misdeeds in
them. You may also uncover large amounts of wasted disk space, especially
if INed is used. The command find / -name .??* -exec ls -l {}\; can be used,
although you might want to redirect output to a file. Expect to see .profile
and similar names.

• The system does not allow rebooting with a CD-ROM or tape if the key
switch is in the Normal or Secure position. Is it routinely left in ″Normal″ or
″Secure″ and the key removed? Who has the key? Backup for this person?

• The root password should be changed on an unannounced schedule by the
system administrator. Who is the backup person? Is there a reliable method
of informing him of a new password?

• Are portable file systems used? Are these always mounted with the nosuid
option? Enter the mount (with no operands) to see the options for currently
mounted file systems. Display /etc/filesystems to examine defined
filesystems. A root user can mount filesystems not in this list. The nosuid
option apparently cannot be specified in /etc/filesystems .

• Is a CD-ROM drive attached to the system? If so, who can mount CD-ROMs?
Are CD-ROMs always mounted with opt ions = nosuid? Files can be
executed from a CD-ROM, even with suid root, making CD-ROMs a potential
major hole in system security. (Older UNIX systems that supported file
systems on diskettes have the same exposure for mounted diskette files.)

• System directories should have permission mode at least as restrictive as
755. Examine all ″world writable″ directories. For each of these, check
whether the sticky bit is set. A sample command is:

find / -perm -002 -type d -exec ls -ld {} \;

World writable directories owned by root or bin, especially if not protected by
the sticky bit, should be examined with some care. (You should be root to

Chapter 10. Checklists and Reviews 101

use the above command without generating many error messages. This find
command will examine the entire directory tree, included NFS mounts and
CD-ROM data. You might want to unmount these before spending much time
with find).

• User home directories that are world writable are common and are
exposures. You can find these with:

find /home -perm -002 -type d -exec ls -ld {} \;

There are few excuses for a user′s home directory to be world writable.
Attacks through such directories are a basic tool of system intruders.

• Is the tcbck facility used? That is, is the command used regularly to (1)
verify the current TCB, and (2) to update the tcbck database with changes to
the TCB? Try the commands:

tcbck -n ALL
tcbck -n tree

• Secure sensitive system files, such as UUCP files, cron tables, system log
files, and system source code. These files should be closed to all users.

• Review permissions on device files. Insecure permissions on device files
allows direct access to hardware devices and their kernel data structures.
Verify these values:

666 for any tty device not in use
664 for any tty device in use
660 for hdn (disk) devices
600 for console
440 for mem and kmem
664 for kbd

These are the settings in a standard AIX 4.1 system. You may want more
restrictive settings.

• All device files should reside in /dev . Any device files residing outside /dev
should be investigated.

• Check for unowned files. The command find / -nouser -print can be used.

• Check permissions on the directories and files containing the cron controls.
These are in the path /var/spool/cron/conntabs . Only root and cron should
have access to most of these files. Since most programs run by cron
execute their commands as root, access to crontab can allow an intruder to
search for programs that are writable by others and then insert code to
obtain root access and compromise the system. (One directory in this path,
/var/spool/secretmail is world-writable.)

• Look in the /var/adm/cron directory. Do the cron.allow , cron.deny , at.allow ,
or at.deny files exist? Some combination of these files should be used to
control these functions. See 9.4, “Controlling cron and at” on page 93.

• Issue the command cronadm cron -l to list all current cron jobs. Inspect the
listing for any obvious problems. Do the same with the cronadm at -l
command.

• Is password aging used? Review the /etc/security/user file.

• Review the ID/password file for unused accounts. Unused logins should be
voided or removed to prevent intruders from gaining unauthorized access.
Disgruntled employees may give passwords away upon leaving the
organization.

102 Elements of Security: AIX 4.1

• An inventory of all setuid/setgid programs should be obtained. The tcbck can
do this. The system administrator should review all setuid/setgid programs
owned by root, bin, or daemon, or owned by the groups: bin, kmem, or mail.
The initial list of setuid/setgid programs should include the owner, group,
permission, and checksums. This list should then be compared with ongoing
lists, and any unrecognized setuid/setgid programs should be disabled and
reviewed. (This task is easier to specify than to do. If /etc/security/sysck.cfg
exists (and has been maintained), you can execute tcbck with the tree
parameter. This will search for unknown suid files. If tcbck cannot be used,
you will need to use find , and perform much manual verification.)

• setuid/setgid programs should have access permissions of 511 (or similar) to
insure that others cannot examine the programs.

• When reviewing suid programs, you must review both the program name and
the complete directory path containing the program. Program names need
not be unique in UNIX. A user can have a program named “passwd,” for
example. It is the directory path (and the current PATH environment) that
prevents this program from being executed instead of the “real” passwd
program.

• Check for at jobs with owner root on a regular basis, and immediately if
someone with knowledge of the root password leaves the organization. The
cronadm at -l command can be used.

• Check for users who change IFS. (This is a low-priority check. A user
experimenting with IFS is most likely to change it dynamically, rather than
through entries in a profile.)

• Under some circumstances, the following commands bypass normal
authentication controls:

− rlogin
− rcp
− rsh (remsh)

If you must use these commands, do not use .rhosts or /etc/hosts.equiv files
to automate their operations. Use find /home -name .rhosts -print to
determine which users have .rhosts files.

• tftp has no user authentication. It should not be used in any network where
any security is required. To disable it, run securetcpip or do the following:

 1. Comment out the line relating to tftpd in /etc/services .
 2. Comment out the line relating to tftpd in /etc/inetd.conf .
 3. Either remove the tftp command from the system or change the

permissions on it to prevent use. The command is /usr/ucb/tftp .

• If you are using the system in a secure mode, you should not allow ftp and
rexec to use .netrc for automatic login.

Chapter 10. Checklists and Reviews 103

104 Elements of Security: AIX 4.1

Appendix A. DoD Classes

The ″Orange Book″ criteria came from a task force of the Defense Science Board
started in 1967. The original report, Security Controls for Computer Systems was
published in 1970. The current document is Trusted Computer System Evaluation
(DoD85). This material is important for many installations, but it is often
misunderstood and misused.

There are two quite distinct sets of criteria. One set defines a number of
security features. The other set defines the tools, information, and some of the
processes required to verify the correctness (design and operation) of the
features. The security features are the Security Policy and the second set is the
Assurance criteria.

Seven security levels are defined. These levels are:

• D - Minimal Protection
• C1 - Discretionary Security Protection
• C2 - Controlled Access Protection
• B1 - Labeled Security Protection, Mandatory Access Control
• B2 - Structured Protection
• B3 - Security Domains
• A1 - Verified Design.

and the following terms have specific meanings:

• Security Policy. These are the ″rules″ that the security features enforce. For
example: every user must have a password, or only a file owner can change
the access list for the file. The specific rules will vary in different security
levels and in local installation standards. The total set of rules enforced by
the system forms the security policy of the system.

• Identification and Authentication (I&A). Subjects must be uniquely defined.
A subject is a user or a process.

• Marking or Labeling. Objects (usually a file) must be associated with a
security label that contains a security level and security category. For
example, ″Secret″ is a level and ″Research″ might be a category.

• Accountability. This refers to complete and secure records of actions that
affect security. Such actions include user setup, assignment or change of
security levels, and denied access attempts.

• Assurance. This refers to system mechanisms that enforce security; it must
be possible to measure the effectiveness of these mechanisms.

• Continuous Protection. The hardware and software mechanisms that
implement security must be protected against unauthorized change.

• Object Reuse. This refers to memory blocks or disk blocks, for example. A
program should not find ″left over″ data from another process or file when it
acquires a memory or disk block.

• Covert Channels. This refers to indirect means of delivering information to an
unauthorized user. For example, a program might make subtle changes to
unclassified messages to convey classified information, or leave data in a
shared memory location.

 Copyright IBM Corp. 1994 105

The following table (taken from DoD85) contains the requirements for the various
security classes.

Criteria Classes

D C1 C2 B1 B2 B3 A1

SECURITY POLICY:
Discretionary Access Control x R R - - R -
Object Reuse x x R - - - -
Labels x x x R R - -
Label Integrity x x x R - - -
Exportation of Labeled Information x x x R - - -
Labeling Human-Readable Output x x x R - - -
Mandatory Access Control x x x R R - -
Subject Sensitivity Labels x x x x R - -
Device Labels x x x x R - -
ACCOUNTABILITY:
Identification and Authentication x R R R - - -
Audit x x R R R R -
Trusted Path x x x x R R -

ASSURANCE:
System Architecture x R R R R R -
System Integrity x R - - - - -
Security Testing x R R R R R R
Design Specification / Verification x x x R R R R
Covert Channel Analysis x x x x R R R
Trust Facility Management x x x x R R -
Trust Recovery x x x x x R -
Trusted Distribution x x x x x x R
DOCUMENTATION:
Security Features User′ s Guide x R - - - - -
Trusted Facility Manual x R R R R R -
Test Documentation x R - - R - R
Design Documentation x R - R R R R

An ″x″ means no requirement. An ″R″ means this class has additional
requirements over the lower classes. A ″-″ means this class has the same
requirements as the next lower class.

As can be seen, the requirements listed in this table are very general. Many
systems can claim to cover various levels of these requirements. To have any
real meaning, a system must be certified for a particular level . This means that
the system was examined (in great detail) by a U.S. government agency and
certified to operate at a certain security level. This certification is a long process
and can be expensive for the system developer. The specific tests and criteria
are designed for national security installations and may not be completely
appropriate for commercial users. Level ″D″ sometimes is applied to a system
that failed tests for a higher level.

Certification does not provide a guarantee or warranty that the security system
is perfect. It merely says that it satisfied the agency performing the tests.
However, these tests are generally accepted to be rigorous.

Discretionary Access Control (DAC) and Mandatory Access Control (MAC) are
very important concepts. DAC allows the owner of a file to set the security
parameters for the file. In AIX this is the owner setting permission bits or ACL

106 Elements of Security: AIX 4.1

controls. MAC means that the system (through control parameters set by the
security officer) automatically controls the security parameters of a file. The
owner of the file cannot change these. AIX does not support MAC.

A system can have both MAC and DAC. The security officer (using various
control lists) decides which files (or categories of files) are controlled through
MAC and which are allowed for DAC. The DoD standard does not specify any
particular implementation for these facilities, and different systems use very
different mechanisms to implements these controls.

Human-readable output labels, specified in the DoD table, means the system
must automatically print security labels on output. This is independent of any
particular application program. This can be a difficult requirement because the
operating system does not understand what an application program is printing
on any particular page. If the system overprints ″TOP SECRET″ at some page
location it may overlay important application output. (The MVS/RACF solution
uses only laser page printers, and prints the security label in a nondestructive
manner.)

A.1.1 Levels for Commercial Users
Class C is the most important security level for most commercial installations.
(Almost all systems at this level control Object Reuse and provide an Audit
facility, although these are C2 requirements only.) Class C is important for two
key reasons, neither of which is directly related to the specific security features
of C1 or C2:

 1. A reasonable set of security features are included. This set is sufficient to
provide reasonable control for most installations without creating a major
administrative burden.

 2. The system has been independently tested and certified to perform these
functions correctly.

Unless there is a specific need for higher security, C1 or C2 should meet
generally accepted security practice requirements ---- if used intelligently. From
the user ′s point of view, there is little difference between C1 and C2.72 The
assurance and testing requirements for C2 are more rigorous and, in this sense,
a C2 system is better than a C1 system.

From a normal commercial viewpoint, class B introduces two major changes:
mandatory security access (MAC) and security labels. Security labels include
both security level (secret,...) and category (research, payroll, ...). A user might
have access to secret data in research, but only unclassified data in payroll.
The implementation of security labels requires substantial changes to most
systems. Both security labels and MAC may require considerable administrative
effort to implement and maintain.

The B2 and B3 classes become very rigorous and are difficult to certify. Class A
security would be very unusual for a commercial installation.

72 C2 requires an Auditing feature and control over Object Reuse. In practice both of these are already in C1 systems.

Appendix A. DoD Classes 107

A.1.2 Comments
System owners often assume the following:

• A higher security class is better.

• A higher class will take care of security needs with less effort.

• Certain applications need a higher security class.

These assumptions are all false and lead to misuse and misunderstanding of the
security classes.

One key factor is the sharing of systems. For example, consider a
customer-account system in a bank. This appears a good candidate for a very
high security level. However if this system is implemented as a totally unshared
system (that is, there are no users other than this application), and there are no
″t imesharing″ terminals attached to the system, and physical security is
sufficient, and so forth, then a formal security class is pointless. Likewise a
small departmental system shared by users of the same ″security level″
(whatever this may mean in a given organization) is unlikely to need as much
protection as a large system shared by many varied users of different security
levels and categories.

More security functions usually require more administrative effort. A higher
class does not automatically provide more security. It is capable of providing
more security, with proper administration. Conversely, a higher class system
may work very poorly and eventually become unusable if the security functions
are not properly administered. Do not buy or install more security than you are
prepared to administer. AIX systems tend to be smaller than typical mainframe
operating systems and may require a different viewpoint for administration and
security. An AIX system is unlikely to have a formal security officer and probably
does not have a full-time administrator of any kind.

AIX/6000 is designed to meet C2 security and, this document describes the
administrative efforts necessary to install and maintain this class system.

The “Orange Book” specifications skip two especially important areas:

• Networking
• System updates

Most AIX systems are attached to local area networks, and it is sometimes
difficult to clearly separate network security from individual system security. An
individual system administrator has little control over general network security
and must accept some network functions ″on faith.″ It is foolish, for example, to
demand a B1 system and then connect it (with default, standard facilities) to an
″open″ TCP/IP network.73

Most commercially available operating systems have updates.74 The DoD
specifications seem to ignore these. It is not practical to re-certify a system for

73 DoD defines a secure networking protocol named DoDIIS Network Security for Information eXchange (DNSIX), which restricts
import and export of classified data through network interfaces. Early versions of AIX 3 provided network interface controls
matching parts of these functions. These functions were rarely used in “real world” systems, and, in particular, were not
used by generally-available TCP/IP functions. The TCP/IP community (as represented by the IETF (Internet Engineering Task
Force))) has chosen other directions for future TCP/IP security mechanisms.

74 IBM sometimes calls these ″PTF tapes″ or ″system maintenance tapes″ or ″system upgrades″ and so forth.

108 Elements of Security: AIX 4.1

every update or ″fix″. Thus, in principle, a system is uncertified after any
update/fix is installed. The same concept applies when third party software
products having ″authorized″ modules are installed. In practice these upgrades
and products are accepted on faith.

Several members of the European community have produced their own
information processing security criteria definition, named ITSEC. This started
with the basic elements from the Orange Book, and then went in somewhat
different directions. A discussion of ITSEC can be found in The Library for
Security Solutions: Security Reference (IBM publication number GG24-4106).

Appendix A. DoD Classes 109

110 Elements of Security: AIX 4.1

Appendix B. Additional Authentication

AIX allows you to specify additional primary authentication steps (“methods”)
and secondary authentication steps. In AIX terminology, a primary
authentication method can reject a user login; a secondary authentication
method cannot reject a login. A secondary authentication step is a method for
running a specific program (which may have nothing to do with authentication)
as part of a specific user′s login process. (This terminology is unique to AIX.)

B.1 Two-person Login
One common method of increasing login security is to require two passwords.
The assumption is that two different people (with the two different passwords)
must be present to complete the login. The two different passwords are
associated with two different accounts. There is no way, using the standard
facilities, to maintain two passwords with a single account.

You can specify a two-person login for a specific account by setting the following
parameters, using smit :

smit
Security and Users
Users
Change/Show Characteristics of a User

*User NAME [joe]
...
PRIMARY Authentication Method [SYSTEM,SYSTEM;mary]

When joe logs into the system, in this example, he will be prompted for his
password. If he responds correctly, the system will issue a prompt for mary′s
password. (Of course, joe might know both passwords, but this defeats the
purpose of the two-person login.) The prompts would be:

login: joe
joe′ s password: xxxxxxx
mary′ s password: xxxxxxx

You must set the PRIMARY Authentication Method exactly as shown above. The
SYSTEM parameter specifies that the normal password authentication program
should be used. By default, it checks the password of the user currently logging
into the system. The second SYSTEM parameter specifies a second check. In
this case it has an operand, ;mary, and verifies the password for the account
specified in the operand. (The syntax is unusual: a comma separates two
different authentication steps. A semicolon separates an authentication method
(SYSTEM) from an optional account name. See the comment below before
attempting to remove the SYSTEM method.)

B.2 Password and Local Program
You can add a local program that provides additional authentication. Your
program obtains control during a login process. If your program ends with
return code zero, the login process continues. If your program ends with any
other return code, the login process is terminated with the message “You

 Copyright IBM Corp. 1994 111

entered an invalid login name or password.” The additional authentication
program runs as root; it need not have suid.

A very simple program is shown here. You would, of course, have more
complex programs, and you would probably not echo the user ′s response to the
screen (as the following program does).

#include <stdio.h>
char ans[256]
main()
{ printf(″What is your cat′ s name? ″) ;
fflush(stdout);
fscanf(stdin,″%s″ ,ans);
if (strcmp(ans, ″sylvester″) == 0) exit (0);
if (strcmp(ans, ″archie″) == 0) exit (0);
exit (-1);

}

This program (after you compile it, and place the output in a convenient location
-- we used /usr/bin/cats) must be defined as an authentication method. This is
done by adding two lines to /etc/security/login.cfg . Find the following lines in
this file:

* auth_method:
* program =

You can overwrite these lines (using your favorite editor) or add lines after
these. Add the following stanza:

CATS:
program = /usr/bin/cats (or whatever name you used)

The authentication method name (“CATS”) need not be the same as the
program name (“cats” in this example).

Next, use smit to add this authentication method to one or more users. (You can
add it to the defaults stanza of /etc/security/users , but it should be well tested
before doing this.)

smit
Security and Users
Users
Change/Show Characteristics of a user
*User NAME [bill]

PRIMARY authentication method [SYSTEM,CATS]

When user bil l next logs into the system, he should receive the prompts:

Console login: bill
bill′ s password: xxxxxxx
What is your cat′ s name?

If bil l responds with “sylvester” or “archie,” the login will succeed. Any other
response will cause the login to be rejected.

If you specify only CATS as the authentication method (that is, remove the
SYSTEM parameter), the login process will first prompt for the cat ′s name. It will
then prompt for the standard password. That is, the SYSTEM authentication
(using the standard password) apparently is always used, whether or not it is
specified.

112 Elements of Security: AIX 4.1

Do not delete the auth1 parameter from the default stanza in /etc/security/user .
If you do, you will be unable to log into any account that does not have an
additional authorization method defined. You can change the auth1=SYSTEM
parameter in the default stanza to another method, such as auth1=CATS. In
this case, the system will prompt every user (who does not have a specific
auth1= parameter defined) for a cat′s name (or whatever your authorization
method does), and it will then prompt for his standard password. Apparently,
you cannot bypass the standard password prompt by removing the STANDARD
parameter in either the default or user′s stanza.

If you experiment much with various authentication methods and parameters,
you will probably lock yourself out of your system. If this happens, review 3.9.1,
“Repairing the root Userid” on page 36. A good suggestion is to test the root
recovery process before you start working with authentication parameters.

Appendix B. Addit ional Authentication 113

114 Elements of Security: AIX 4.1

Appendix C. Audit Events

The following is a list of all known audit events built into AIX 4.1. A description
of the user (or system) operation that triggered the event is listed, followed by
the audit event name, followed by a brief description (in parenthesis) of the audit
event if this is not clear from the event′s name.

Note that some events do not represent a global view. For example, if a user
account is added to the system by directly editing /etc/passwd , a mkuser audit
event is not generated.

USER/SYSTEM AUDIT EVENT TAIL

fork PROC_Create child process ID
exit PROC_Delete process ID
exec PROC_Execute euid, egid, epriv, name
setuidx PROC_RealUID real UID
setuidx PROC_AuditID login UID
setgidx PROC_RealGID real GID
usrinfo PROC_Environ environment buffer
sigaction PROC_SetSignal
setrlimit PROC_Limits
nice PROC_SetPri new priority
setpri PROC_SetPri new priprity
setpriv PROC_Privilege command, privelege set
settimer PROC_Settimer
open FILE_Open mode, descriptor, filename
create FILE_Open mode, descriptor, filename
read FILE_Read descriptor
write FILE_Write descriptor
close FILE_Close descriptor
link FILE_Link linkname, filename
unlink FILE_Unlink filename
rename FILE_Rename frompath, topath
chown FILE_Owner UID, GID, filename
chmod FILE_Mode mode, filename
mount FS_Mount object, stub
umount FS_Umount object, stub
chacl FILE_Acl acl
chpriv FILE_Privilege privelege
chdir FS_Chdir directory path
chroot FS_Chroot directory path
rmdir FS_Rmdir directory name/path
mkdir FS_Mkdir directory name/path
msgget MSG_Create key, msqid
msgrcv MSG_Read msqid, mpid
msgsnd MSG_Write msqid
msgctl MSG_Delete msqid
msgctl MSG_Owner msqid, UID, GID
msgctl MSG_Mode msqid, mode
semget SEM_Create key, semid
semop SEM_Op semid
semctl SEM_Delete semid
semctl SEM_Owner semid, UID, GID
semctl SEM_Mode semid, mode
shmget SHM_Create key, shmid
shmat SHM_Open shmid

 Copyright IBM Corp. 1994 115

shmctl SHM_Close shmid
shmctl SHM_Owner shmid, UID, GID
shmctl SHM_Mode shmid, mode

TCPIP_config (5 text strings)
{various TCPIP_host_id (4 text strings)
 modules TCPIP_route (5 text strings)
 in the TCPIP_connect (5 text strings)
 TCPIP TCPIP_data_out (5 text strings)
 subsystem} TCPIP_data_in (5 text strings)

TCPIP_access (5 text strings)
TCPIP_set_time (4 text strings)
TCPIP_kconfig
TCPIP_kroute
TCPIP_kconnect
TCPIP_kdata_out
TCPIP_kdata_in
TCPIP_kcreate

tsm USER_Login login command
tsm PORT_Locked port name
sysck SYSCK_Check (text string)
sysck SYSCK_Update (text string)
sysck SYSCK_Install (text string)
usrck USER_Check (3 text strings)
logout USER_Logout (text string)
chsec PORT_Change portname, valuea
chuser USER_Change (2 text strings)
rmuser USER_Remove (text string)
mkuser USER_Create (text string)
setgroups USER_SetGroups (2 text strings)
setsenv USER_SetEnv (2 text strings)
su USER_SU (text string)
grpck GROUP_User userid, group name
grpck GROUP_Adms userid, group name
chgroup GROUP_Change (2 text strings)
mkgroup GROUP_Create (text string)
rmgroup GROUP_Remove (text string)
passwd PASSWORD_Change (text string)
pwdadm PASSWORD_Flags (text string)
pwdck PASSWORD_Check userid, error, status
pwdck PASSWORD_Ckerr user/file name, error, status
startsrc SRC_Start (text string)
stopsrc SRC_Stop (text string)
addssys SRC_Addssys (text string)
chssys SRC_Chssys (text string)
addserver SRC_Addserver (text string)
chserver SRC_Chserver (text string)
rmssys SRC_Delssys (text string)
rmserver SRC_Delserver (text string)
enq ENQUE_admin queue, device, request, operation
qdaemon ENQUE_exec queue, request, host, file, operation
sendmail SENDMAIL_Config (text string)
sendmail SENDMAIL_Tofile from userid, to filename
at AT_JobAdd filename, userid, time
at AT_JobRemove filename, userid
cron CRON_JobRemove filename, userid, time
cron CRON_JobAdd filename, userid, time
cron CRON_Start event name, command, time
cron CRON_Finish userid, pid, time
nvload NVRAM_Config (text string)

116 Elements of Security: AIX 4.1

cfgmgr DEV_Configure device name
chdev DEV_Change (text string)
mkdev DEV_Change (text string)
mkdev DEV_Create mode, device, filename
mkdev DEV_Start (text file)
installp INSTALLP_Inst option name, level, installation
installp INSTALLP_Exec option name, level, program name
updatep UPDATEP_Name (text string)
rmdev DEV_Stop device name
rmdev DEV_UnConfigure device name
rmdev DEV_Remove device name
lchangelv LVM_ChangeLV (text string)
lextendlv LVM_ChangeLV (text string)
lreducelv LVM_ChangeLV (text string)
lchangepv LVM_ChangeVG (text string)
lextendpv LVM_ChangeVG (text string)
lreducepv LVM_ChangeVG (text string)
lcreatelv LVM_CreateLV (text string)
lcreatevg LVM_CreateVG (text string)
ldeletepv LVM_DeleteVG (text string)
rmlv LVM_DeleteLV (text string)
lvaryoffvg LVM_VaryoffVG (text string)
lvaryonvg LVM_VaryonVG (text string)
backup BACKUP_Export (text string)
backup BACKUP_Priv (text string)
restore RESTORE_Import (text string)
shell USER_Shell (text string)

------------- Object Events -----------------

S_ENVIRON_WRITE /etc/security/environ
S_GROUP_WRITE /etc/group
S_LIMITS_WRITE /etc/security/limits
S_LOGIN_WRITE /etc/security.login.cfg
S_PASSWD_READ /etc/security/passwd
S_PASSWD_WRITE /etc/security/passwd
S_USER_WRITE /etc/security/user
AUD_CONFIG_WR /etc/security/audit/config

Appendix C. Audit Events 117

118 Elements of Security: AIX 4.1

Index

Special Characters
/audit directory 85
/audit/auditb 85
/audit/stream.out 84
/audit/ trai l 56, 84
/dev modes 78
/dev ownership 78
/dev/console 59
/etc/exports 68
/etc/group 30
/etc/hosts.equiv 64
/etc/hosts.lpd 65
/etc/inetd.conf 66
/etc/passwd 13, 30
/etc/passwd usage 20
/etc/passwd.dir 30
/etc/passwd.pag 30
/etc/profi le 24, 30, 32
/etc/security directory 20
/etc/security/. ids 16, 30
/etc/security/.profi le 16, 30
/etc/security/audit f i les 85
/etc/security/audit/bincmds 84
/etc/security/audit/streamcmds 84
/etc/security/config 63, 66
/etc/security/environ 16, 30
/etc/security/fai ledlogin 30, 56
/etc/security/group 27, 30
/etc/security/lastlog 30
/etc/security/ l imits 30, 32
/etc/security/login.cfg 30, 35
/etc/security/mkuser.default 27, 30
/etc/security/oenviron 33
/etc/security/olastlog 33
/etc/security/ol imits 33
/etc/security/opasswd 33
/etc/security/osysck.cfg 33
/etc/security/ouser 33
/etc/security/passwd 16, 30
/etc/security/sysck.cfg 78, 79
/etc/security/user 20, 30, 33, 95, 111
/etc/security.lastlog 76
/etc/utmp 56, 76
/set/hosts 66
/ tmp 59
/tmp files, security 58
/var/adm/acct/f iscal/* 56
/var/adm/acct/nite/* 56
/var/adm/acct/sum/* 56
/var/adm/cron/at.al low 93
/var/adm/cron/at.deny 93
/var/adm/cron/cron.al low 93
/var/adm/cron/cron.deny 93

/var/adm/cron/ log 56
/var/adm/dtmp 56
/var/adm/messages 56
/var/adm/pacct 56
/var/adm/qacct 56
/var/adm/sulog 15, 56, 76
/var/adm/wtmp 56, 75
/var/mai l /* 56
.netrc 65, 103
.profile 24
.rhosts 65
$HOME permissions 100

A
access control 49
ACCOUNT LOCKED control 18
accounting 75
ACL editor 56
ACL, NFS 69
acledit command 53
aclget command 53
aclput command 53
ACLs, definition 53
ACLs, with groups 27
adapter security 73
administrat ive parameters 18
administrator, system 6
archive fi les 97
at, controls 93
atime, t imestamp 52
audit classes 85
audit command 85
audit events 83, 115
audit objects 83, 115
audit subsystem 83
audit tail 84
audit, security 7
authentication 9
AUTHENTICATION GRAMMAR 19
authentication methods 111
authentication, additional 33
authentication, setting 19
authoriztion 9

B
B1 systems 105
B2 systems 105
base ACL 53
BIN mode, audit 84
boot, hard disk 4
boot, tape/CD-ROM 4

 Copyright IBM Corp. 1994 119

C
C1 systems 105
C2 systems 105
C2-level security 9
CD-ROM file system 40
chmod command 49, 56
chown command 58
communication l ines 61
core 56
cp command 44
cracker programs 37
cron controls 96
cron, controls 93
cronadm command 94
crontab command 93
ctime, t imestamp 52

D
data import security 73
data scopes 61
defaults, system 20
deny 53
DES, Secure NFS 70
DFS, auditing 89
dial-up security 61
directory permissions 4, 45, 100
DoD security levels 3

E
EDITOR variable 55
encryption, NFS 70
error logging 57
errpt command 57
Ethernet security 61
event auditing 83
EXPIRATION date 18
expiration, password 19
extended ACL 53, 56

F
fi le security, introduction 39
file system, private 41
file systems, definition 39
files, growing 56
files, unowned 59
find command 59
firewall 91
firewalls 62
fsck command 40
fsize 32
ftp command 63, 103

G
GID, file owner 43
group inheritance bit 51
group password 27
groups 27
groups, multiple 54
groups, standard 29
grpck command 33, 99

H
Haystack Labs., Inc. 90
herald, login 96
hubs, switched 61

I
IFS 36
IFS variable 97
INed files 57
initial PROGRAM 18
inodes 42
intruder, definition 4

J
JFS 39
journalled fi le system 39

K
kernel extensions 9
keyswitch, S/6000 4

L
LAN adapter security 73
LAN anaylzers 61
LAN channels 61
last command 76
lastlog file 76
LFS 40
line security 61
link permission bit 51
links, file 42
local file system 40
LOCKED control 18
LOGIN control 18
login herald 96
LOGIN times 18
login, authentication 111
login, two-person 111
logs, AIX 75
ls command, intro 47
lsgroup command 33
lsuser command 33

120 Elements of Security: AIX 4.1

M
mkpasswd command 35
mkuser command 16
mode bits 44
mount command 39, 41
mount point 40
mtime, t imestamp 52
m v command 44

N
netstat command 67
network fi le system 67
network information service 71
network security 61
network security goals 62
new user 97
NFS 67
NFS files 59
NFS, auditing 89
NFS, secure 69
NIS 71

O
object auditing 83
Orange Book 105
owner permissions 45
ownership, file 43

P
passwd command 21
password entry 21
password quality controls 95
password warning 19
password, cracker 37
password, encryption 21
password, guidelines 22
password, new user 97
password, quality 23
passwords, overview 21
passwords, problem 4
passwords, setting 21
passwords, two-person 111
PATH 24
permission bits 44
permissions, directory 45, 51
permissions, exclusions 50
permissions, fi le 45
permit 53
physical security 4, 61
port, control 35
port, SAK 80
power-on hours 6
profi le 16
program access control 49

prompt, shell 26, 96
pwdck command 33, 99

Q
quotas, setting 19

R
RACF, MVS 9
rcp command 63, 103
REGISTRY 19
remote login 64
remote LOGIN control 18
remsh 103
reset button 4
rexec command 63
rlogin command 63, 103
root password 95
root user, definition 14
root user, sharing 14
root, disabling 26
root, repairing 36
rsh command 63, 103

S
SAK 79
SAK, all terminals 96
save-text bit 49
search permission 47, 52
secure attention key 79
securetcpip command 63, 96, 103
security audit 7
Security Policy 1
security structure 9
security, adapter 73
security, group 29
server, definit ion 3
SGID 53
sgid bit, definition 49
shadow files 20
shar files 97
shell prompt 26
shell script suid 50
skulker command 56
skulker script 92
skulker, output 96
smit, audit parameter 85
smit, description 11
smit, user control 16
smit, user menu 17
smit.log 56
sniffers, snoopers, LAN 61
SOCKS protocol 91
specify 53
Stalker product 90
sticky bit 47, 51, 59

Index 121

sticky bit, definition 49
sticky bit, use 50
stopsrc command 63
STREAM mode, audit 84
su command 97
SU control 18
subsystems 9
SUID 53
suid bit, definition 49
suid, problem 4
suid, shell scripts 4, 50, 58
sulog 15
sulog file 76
superuser 29
SVTX 53
SVTX bit 51
switched hubs 61
symbolic l ink 43
symbolic links, permissions 58
sysck program 78, 79
sysck.cfg file 78, 79
system administrator 6
system structure 9

T
TCB 9, 77
tcb, recommendation 95
tcbck program 78, 79, 96
TCP/IP 61, 66, 103
telnet command 63, 103
tftp command 63, 103
threads, audit 89
TIMEOUT variable 25, 95
timeout, control 25
times, login, control 18
timestamps, fi le 52
TMOUT variable 25, 95
token ring security 61
tpath parameter 80
Trojan horse 25, 80
trpt command 63
trusted computing base 9, 77
trusted shell 79
tsh shell 79
tty, control, user 19

U
UID, creating 17
UID, definition 13
UID, file owner 43
ulimit parameter 58
umask 52
umask value 98
UMASK, setting 19
umount command 39
unowned files 59

user accounts 13
userid, creating 17
userid, definition 13
userids, standard 29
users 16
usrck command 33, 99
utmp file 76

V
VFS 40
virtual f i le system 40
visual system manager 11
vsm, description 11

W
warning, password 19
who command 36, 76
workstation security 15
workstation, definition 3
wtmp fi le 75

X
X Windows 92
XDM 92
XStation 120 63

122 Elements of Security: AIX 4.1

	Elements of Security: AIX 4.1
	Abstract
	Contents
	Special Notices
	Preface
	Acknowledgments

	Chapter 1. Introduction
	Security Policy, Standards, Guidelines
	Who Needs Security?
	How Much Security?
	System Categories
	Common Security Exposures
	Physical Security
	On† Hours
	System Administrator
	Computer Security Audits and Reviews

	Chapter 2. AIX Security Structure
	smit
	Visual System Manager

	Chapter 3. User Accounts
	User Identification, UID
	The root User
	Single- user Workstations
	Users
	User Parameters in Smit
	System Defaults
	Shadow Files
	Passwords
	Search PATH For User
	Timeouts
	Prompts
	Disabling the root Userid
	Groups
	AIX Group Usage and Administration
	Standard Userids
	Files Associated With User Accounts
	Additional Authentication Methods
	Verifying the User Environment
	Other Topics
	Repairing the root Userid
	Password Cracker Programs

	Chapter 4. AIX File Security
	File Systems
	Private File Systems
	Inodes and Links
	Ownership
	Permission Bits (Basic)
	Basic File Security Concepts
	The ls Command
	Permission Bits (Advanced)
	The umask Variable
	File Timestamps
	The ACL Commands
	Files That Grow
	AIX Version 4 Error Logging
	Other Comments
	Unowned Files
	The /tmp Directory

	Chapter 5. Network Security
	Physical Communication Security
	Network Security Goals
	The securetcpip Command
	Remote Login Controls
	Other Important TCP/ IP Files
	The netstat Command
	Network File System Overview
	The /etc/ exports File
	NFS Support for ACLs (Access Control Lists)
	Secure NFS Operations
	The Client - Server DES Interaction
	Network Information Service (NIS)
	Adapter Security Levels

	Chapter 6. Logs and Accounting
	AIX Log Files

	Chapter 7. Trusted Computing Base
	TCB Description
	Using the tcbck Command
	Using the Trusted Login and Trusted Shell

	Chapter 8. Auditing Functions
	Audit Configuration
	Basic Audit Usage
	Recommendations for Auditing
	Audit Limitations
	Auditing Products

	Chapter 9. Other Topics
	Firewalls
	X Windows
	The skulker Script
	Controlling cron and at

	Chapter 10. Checklists and Reviews
	Planning
	Initial Installation
	Continuing Activities
	Reviewing a System

	Appendix A. DoD Classes
	A. 1.1 Levels for Commercial Users
	A. 1.2 Comments

	Appendix B. Additional Authentication
	B. 1 Two- person Login
	B. 2 Password and Local Program

	Appendix C. Audit Events
	Index
	Special Characters

